SYNTHESIS OF QUINAZOLINES FROM (2-AMINOARYL)METHANOLS
815
d (J = 8.2 Hz, 1H), 8.05(m, 1H), 9.23 s (1H). 13C NMR
spectrum, δ, ppm: 123.3, 127.0, 127.2, 128.19, 128.4,
129.2, 129.9, 134.3, 143.8, 150.6, 157.8, 160.5.
2006, vol. 14, p. 5020. doi 10.1016/j.bmc.2006.03.001
8. Madapa, S., Tusi, Z., Mishra, A., Srivastava, K.,
Pandey, S.K., Tripathi, R., Puri, S.K., and Batra, S.,
Bioorg. Med. Chem., 2009, vol. 17, p. 222. doi 10.1016/
j.bmc.2008.11.005
CONCLUSIONS
9. Fang, J., Zhou, J.G., and Fang, Z.J., RSC Adv., 2013,
vol. 3, p. 334. doi 10.1039/C2RA22278G,Communication
A rhodium-catalyzed synthesis of quinazoline
derivatives via dehydrogenation and ring-closing
reaction is developed. This method provides an easy
and efficient approach to quinazoline derivatives with
moderate to high yields.
10. Han, B., Yang, X. L., Wang, C., Bai, Y.W., Pan, T.C.,
Chen, X., and Yu, W., J. Org. Chem., 2012, vol. 77,
p. 1136. doi 10.1021/jo2020399
11. Zhang, J., Zhu, D., Yu, C., Wan, C., and Wang, Z., Org.
Lett., 2010, vol. 12, p. 2841. doi 10.1021/ol100954x
ACKNOWLEDGMENTS
12. Yan, Y. and Wang, Z., Chem. Commun., 2011, vol. 47,
p. 9513. doi 10.1039/C1CC12885J
We gratefully acknowledge financial support of this
work by the Natural Science Foundation (20130124).
13. Han, B., Wang, C., Han, R.-F., Yu, W., Duan, X.-Y.,
Fang, R., and Yang, X.-L., Chem. Commun., 2011,
vol. 47, p. 7818. doi 10.1039/C1CC12308D
REFERENCES
14. Chen, Z., Chen, J., Liu, M., Ding, J., Gao, W., Huang, X.,
and Wu, H., J. Org. Chem., 2013, vol. 78, p. 11342.
doi 10.1021/jo401908g
1. Connolly, D.J., Cusack, D., O’Sullivan, T.P., and
Guiry, P.J., Tetrahedron, 2005, vol. 61, p. 10153. doi
org/10.1016/j.tet.2005.07.010
15. Chen, Y.-C. and Yang, D.-Y., Tetrahedron., 2013,
vol. 69, p. 10438. doi org/10.1016/j.tet.2013.09.089
2. Michael, J.P., Nat. Prod. Rep., 2008, vol. 25, p. 166.
16. Chen, M., Zhang, M., Xiong, B., Tan, Z., Lv, W., and
Jiang, H., Org. Lett., 2014, vol. 16, p. 6028. doi
10.1021/ol503052s
doi 10.1039/B612168N
3. Witt, A. and Bergman, J., Curr. Org. Chem., 2003,
vol. 7, p. 659. doi org/10.2174/1385272033486738
17. Ju, J., Hua, R., and Su, J., Tetrahedron., 2012, vol. 68,
p. 9364. doi org/10.1016/j.tet.2012.09035
4. Parhi, A.K., Zhang, Y., Saionz, K.W., Pradhan, P.,
Kaul, M., Trivedi, K., Pilch, D.S., and LaVoie, E.J.,
Bioorg. Med. Chem. Lett., 2013, vol. 23, p. 4968. doi
org/10.1016/j.bmcl.2013.06.048
18. Karnakar, K., Kumar, A.V., Murthy, S.N., Ramesh, K.,
and Nageswar, Y.V.D., Tetrahedron Lett., 2012,
vol. 53, p. 4613. doi org/10.1016/j.tetlet.2012.06.098
5. Ugale, V.G. and Bari, S.B., Eur. J. Med. Chem., 2014,
19. Malakar, C.C., Baskakova, A., Conrad, J., and Beifuss, U.,
Chem. Eur. J., 2012, vol. 18, p. 8882. doi 10.1002/
chem.201200583
vol. 80, p. 447. doi org/10.1016/j.ejmech.2014.04.072
6. Ple, P.A., Green, T.P., Hennequin, L.F., Curwen, J.,
Fennell, M., Allen, J., Lambertvan der Brempt, C., and
Costello, G., J. Med. Chem., 2004, vol. 47, p. 871. doi
10.1021/jm030317k
20. Lin, J.P., Zhang, F.H., and Long, Y.Q., Org. Lett., 2014,
vol. 16, p. 2822. doi 10.1021/ol500864r
21. Hounjet, L.J., McDonald, R., Ferguson, M.J., and
Cowie, M., Inorg. Chem., 2011, vol. 50, p. 5361. doi
10.1021/ic101883u
7. Henderson, E.A., Bavetsias, V., Theti, D.S., Wilson, S.C.,
Clauss, R., and Jackman, A.L., Bioorg. Med. Chem.,
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 87 No. 4 2017