Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
As expected for the highly Lewis-acidic magnesium centre, a
dimeric structure (H-1)2 was found to be favoured over a
monomeric magnesium hydride H-1 (ΔG = 8.9 kcal/mol). More
importantly, binding of HBPin is strongly exergonic relative to
Soc., 2015, 137, 8944–8947; (e) W. Wang, M. Luo, J. Li, S. A.
DOI: 10.1039/C9CC09111D
Pullarkat and M. Ma, Chem. Commun., 2018, 54, 3042–3044; (f)
J. S. Wixey and B. D. Ward, Chem. Commun., 2011, 47, 5449–
5451; (g) B. E. Uno, et al., Chem. Sci., 2018, 9, 1634–1639; (h) L.
Yu, et al., Sci. Bull., 2018, 63, 1010–1016; (i) J. F. Dunne, D. B.
Fulton, A. Ellern and A. D. Sadow, J. Am. Chem. Soc., 2010, 132,
17680–17683; (j) X. Zhang, T. J. Emge and K. C. Hultzsch, Angew.
Chem. Int. Ed., 2012, 51, 394–398.
(a) G. Kociok-Köhn, M. F. Mahon, M. D. Anker, M. Arrowsmith,
C. Weetman, D. J. Liptrot and M. S. Hill, Chem. Sci., 2015, 7,
628–641; (b) M. Arrowsmith, M. S. Hill and G. Kociok-Köhn,
Chem. - Eur. J., 2013, 19, 2776–2783; (c) N. L. Lampland, M.
Hovey, D. Mukherjee and A. D. Sadow, ACS Catal., 2015, 5,
4219–4226; (d) S. Yadav, R. Dixit, M. K. Bisai, K. Vanka and S. S.
Sen, Organometallics, 2018, 37, 4576–4584; (e) Y. Yang, et al.,
Chem. Sci., 2017, 8, 3529–3537; (f) T. Hadlington, C. Weetman,
G. Kociok-Köhn, M. S. Hill and M. Arrowsmith, Organometallics,
2011, 30, 5556–5559; (h) J. Intemann, M. Lutz and S. Harder,
Organometallics, 2014, 33, 5722–5729.
(a) S. Kobayashi, Y. Yamashita, Acc. Chem. Res., 2011, 44, 58–71;
(b) Y. Yamashita, T. Tsubogo and S. Kobayashi, Chem. Sci., 2012,
3, 967–975; (c) Y. Yamashita, T. Tsubogo, S. Kobayashi, Top
Organomet. Chem, 2018, 62, 121–146.
A. Falconnet, M. Magre, B. Maity, L. Cavallo and M. Rueping,
Angew. Chem. Int. Ed. 2019, 58, 17567 –17571.
(a) F. Buch, J. Brettar and S. Harder, Angew. Chem. Int. Ed.,
2006, 45, 27412745; (b) J. Spielmann and S. Harder, Eur. J.
Inorg. Chem., 2008, 9, 14801486; (c) S. Harder, Chem. Rev.,
2010, 110, 38523876.
M. Arrowsmith, T. J. Hadlington, M. S. Hill, G. Kociok-Köhn,
Chem. Commun. 2012, 48, 4567–4569.
both intermediates, highlighting the prevalence of
a
magnesium borohydride B-1 during hydroboration catalysis.
The borane coordination mode appears to be regulated by
the presence of a co-ligand, with the true zwitterionic
structure as encountered the solid state only being favoured
upon introduction of an additional ketone donor (B-1/2 vs B-
3). In this regard, the THF ligand in the crystal structure can be
considered a ketone surrogate and a rapid equilibrium
between both states is expected during catalysis in solution.
We could locate a low-energy transition state manifold B-ts
following the coordination of the ketone which preferentially
produced the (S)-product (ΔG‡ = 8.6 kcal/mol, ΔΔG‡ = 2.2
kcal/mol). In contrast, no direct insertion path was found for
the dimeric structure and only enolization steps leading to the
release of H2 were identified for an Mg-H monomer. As a
consequence, not only is the zwitterionic magnesium
hydridoborate more stable than its hydride congener, it also
facilitates a productive conversion of the ketone substrate.
In conclusion, a magnesium-based catalyst has been
developed for the enantioselective hydroboration of ketones
under mild reaction conditions. In situ NMR spectroscopy and
isolation of proposed catalytic intermediates, as well as DFT
modeling have established a zwitterionic structure formed
from a magnesium hydride and HBPin as the critical motif to
turn the poor characteristics of a slow and unselective direct
Mg-H insertion into a fast and highly selective transformation.
This study may serve as an inspiration for other reductive
transformations in alkaline earth metal catalysis and beyond.15
The authors acknowledge a predoctoral fellowship to V. V.
(LGF Funding Program of the state of Baden-Württemberg)
3
4
5
6
7
8
(a) M. D. Anker, M. Arrowsmith, R. L. Arrowsmith, M. S. Hill and
M. F. Mahon, Inorg. Chem., 2017, 56, 5976–5983; (b) C.
Weetman, M. D. Anker, M. Arrowsmith, M. S. Hill, G. Kociok-
Köhn, D. J. Liptrot and M. F. Mahon, Chem. Sci., 2016, 7, 628–
641.
and
generous
funding
by
the
Deutsche
Forschungsgemeinschaft (DFG, Ga488/9-2) as well as support
by the bwHPC initiative and the bwHPC-C5 project.
9
D. Mukherjee, A. Ellern and A. D. Sadow, Chem. Sci., 2014, 5,
959–964.
Notes and references
10 L. E. Lemmerz, D. Mukherjee, T. P. Spaniol, A. Wong, G. Ménard,
L. Maron and J. Okuda, Chem. Commun., 2019, 55, 31993202.
11 M. Magre, B. Maity, A. Falconnet, L. Cavallo and M. Rueping,
Angew. Chem. Int. Ed., 2019, 58, 70257029.
12 (a) C. K. Blasius, V. Vasilenko and L. H. Gade, Angew. Chem. Int.
Ed., 2018, 57, 10231–10235; (b) T. Bleith, H. Wadepohl and L. H.
Gade, J. Am. Chem. Soc., 2015, 137, 2456–2459; (c) T. Bleith and
L. H. Gade, J. Am. Chem. Soc., 2016, 138, 4972–4983.
13 (a) V. Vasilenko, C. K. Blasius and L. H. Gade, J. Am. Chem. Soc.,
2018, 140, 9244–9254; (b) V. Vasilenko, C. K. Blasius, H.
Wadepohl and L. H. Gade, Angew. Chem. Int. Ed., 2017, 56,
8393–8397.
14 For comparison of other boxmi metal complexes: see ref. [10b]
and [11a]; for comparison of other Mg comlexes: see A. Díaz-
Moscoso, G. J. Tizzard, S. J. Coles and A. N. Cammidge, Angew.
Chem. Int. Ed., 2013, 52, 10784–10787, and ref. [7] or [9].
15 S. Patnaik and A. D. Sadow, Angew. Chem. Int. Ed., 2019, 58,
2505–2509.
1
(a) M. Arrowsmith and M. S. Hill, in Comprehensive Inorganic
Chemistry II (Second Edition): From Elements to Applications,
Elsevier, 2013, vol. 1, pp. 1189–1216; (b) S. Khaleghi, et al.,
Green Chem. Lett. Rev., 2008, 1, 133–139; (c) M. D. Anker and
M. S. Hill, in Encyclopedia of Inorganic and Bioinorganic
Chemistry, John Wiley & Sons, Ltd, Chichester, UK, 2017, pp. 1–
23; (d) M. D. Anker, M. S. Hill, J. P. Lowe and M. F. Mahon,
Angew. Chem. Int. Ed., 2015, 54, 10009–10011; (e) M. R.
Crimmin, et al., Chem. - Eur. J., 2008, 14, 11292–11295; (f) Y.
Sarazin and J. F. Carpentier, Chem. Rec., 2016, 16, 2482–2505;
(g) D. Mukherjee, D. Schuhknecht and J. Okuda, Angew. Chem.
Int. Ed., 2018, 57, 9590–9602; (h) M. Rauch, S. Ruccolo and G.
Parkin, J. Am. Chem. Soc., 2017, 139, 13264–13267.
2
(a) M. Ma, J. Li, X. Shen, Z. Yu, W. Yao and S. A. Pullarkat, RSC
Adv., 2017, 7, 45401–45407; (b) N. L. Lampland, et al., Chem.
Sci., 2015, 6, 6901–6907 (c) A. J. Boutland, A. Carroll, C. Alvarez
Lamsfus, A. Stasch, L. Maron and C. Jones, J. Am. Chem. Soc,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins