Hypoxia-SelectiVe 3-Alkyl 1,2,4-Benzotriazine 1,4-Dioxides
Journal of Medicinal Chemistry, 2007, Vol. 50, No. 26 6663
Preparation of 1-Oxides. General Method C. MsCl (5.0 mmol)
Endogenous markers of two separate hypoxia response pathways
(
hypoxia inducible factor 2 alpha and carbonic anhydrase 9) are
was added to a stirred solution of alcohol (4.0 mmol) and Et
3
N
associated with radiotherapy failure in head and neck cancer patients
(
5.2 mmol) in dry DCM (50 mL) at 20 °C, and the solution was
recruited in the CHART randomized trial. J. Clin. Oncol. 2006, 24,
stirred for 2 h. The solution was diluted with DCM (50 mL) and
washed with water (2 × 30 mL), brine (50 mL), and the organic
fraction was dried and the solvent was evaporated. The residue was
dissolved in THF (50 mL) and amine (100 mmol) added, and the
solution was heated at reflux temperature for 6 h, then stirred at 20
7
27–735.
(
13) Denny, W. A.; Wilson, W. R.; Hay, M. P. Recent developments in
the design of bioreductive drugs. Br. J. Cancer 1996, 74, S32–S38.
(14) Brown, J. M.; Giaccia, A. J. The unique physiology of solid tumors:
opportunities (and problems) for cancer therapy. Cancer Res. 1998,
5
8, 1408–1416.
°
C for 16 h. The solvent was evaporated and the residue was
(
15) Brown, J. M. SR 4233 (tirapazamine): a new anticancer drug exploiting
hypoxia in solid tumours. Br. J. Cancer 1993, 67, 1163–1170.
partitioned between EtOAc (100 mL) and water (100 mL). The
aqueous fraction was extracted with EtOAc (3 × 50 mL), the
combined organic fraction was dried, and the solvent was evapo-
rated. The residue was purified by chromatography, eluting with a
gradient (0–10%) of MeOH/EtOAc, to give 1-oxide.
(
16) Denny, W. A.; Wilson, W. R. Tirapazamine: a bioreductive anticancer
drug that exploits tumour hypoxia. Expert Opin. InVest. Drugs 2000,
9
, 2889–2901.
(
17) Patterson, A. V.; Saunders, M. P.; Chinje, E. C.; Patterson, L. H.;
Stratford, I. J. Enzymology of tirapazamine metabolism: a review. Anti-
Cancer Drug Des. 1998, 13, 541–573.
(18) Anderson, R. F.; Shinde, S. S.; Hay, M. P.; Gamage, S. A.; Denny,
W. A. Activation of 3-amino-1,2,4-benzotriazine 1,4-dioxide antitumor
agents to oxidizing species following their one-electron reduction.
J. Am. Chem. Soc. 2003, 125, 748–756.
19) Shinde, S. S.; Anderson, R. F.; Hay, M. P.; Gamage, S. A.; Denny,
W. A. Oxidation of 2-deoxyribose by benzotriazinyl radicals of
antitumor 3-amino-1,2,4-benzotriazine 1,4-dioxides. J. Am. Chem. Soc.
Preparation of 1-Oxides. General Method D. Sodium hydride
(
2.0 mmol) was added to a stirred suspension of fluoride (1.6 mmol)
in alcohol (10 mL), and the resulting solution was stirred at 20 °C
for 3 h under N . The solvent was evaporated, and the residue was
2
partitioned between DCM (30 mL) and water (30 mL). The organic
fraction was dried, and the solvent was evaporated. The residue
was purified by column chromatography, eluting with a gradient
(
(
0–5%) of MeOH/DCM, to give the 1-oxide.
2
004, 126, 7853–7864.
Acknowledgment. The authors thank Jane Botting, Dr.
(20) Wang, J.; Biedermann, K. A.; Brown, J. M. Repair of DNA and
chromosome breaks in cells exposed to SR 4233 under hypoxia or to
ionizing radiation. Cancer Res. 1992, 52, 4473–4477.
Maruta Boyd, Alison Hogg, Sisira Kumara, Sarath Liyanage,
and Joanna Sturman for technical assistance. The authors thank
Degussa Peroxide Ltd, Morrinsville, NZ, for the generous gift
of 70% hydrogen peroxide. This work was supported by the
U.S. National Cancer Institute under Grant CA-82566 (M.P.H.,
K.O.H., F.B.P., K.P., W.R.W., and W.A.D.), the Health
Research Council of New Zealand (W.R.W.), the Cancer Society
of New Zealand (B.G.S.), and the Auckland Division of the
Cancer Society of New Zealand (W.A.D.). Further support from
Proacta Therapeutics Ltd and the Australian Institute of Nuclear
Sciences and Engineering is acknowledged.
(
21) Siim, B. G.; van Zijl, P. L.; Brown, J. M. Tirapazamine-induced DNA
damage measured using the comet assay correlates with cytotoxicity
towards hypoxic tumour cells in vitro. Br. J. Cancer 1996, 73, 952–
9
60.
(
22) Siim, B. G.; Menke, D. R.; Dorie, M. J.; Brown, J. M. Tirapazamine-
induced cytotoxicity and DNA damage in transplanted tumors:
relationship to tumor hypoxia. Cancer Res. 1997, 57, 2922–2928.
(23) Siim, B. G.; Pruijn, F. B.; Sturman, J. R.; Hogg, A.; Hay, M. P.; Brown,
J. M.; Wilson, W. R. Selective potentiation of the hypoxic cytotoxicity
of tirapazamine by its 1-N-oxide metabolite SR 4317. Cancer Res.
2
004, 64, 736–742.
(
24) Brown, J. M; Wang, L. H. Tirapazamine: laboratory data relevant to
clinical activity. Anti-Cancer Drug Des. 1998, 13, 529–539.
(25) Marcu, L.; Olver, I. Tirapazamine: From bench to clinical trials. Curr.
Clin. Pharmacol. 2006, 1, 71–79.
Supporting Information Available: Experimental details and
characterization data for synthetic intermediates and BTOs 3–28;
experimental details for the physicochemical and biological meth-
ods; tables of physicochemical and in vitro data with estimates of
errors. This information is available free of charge via the Internet
at http://pubs.acs.org.
(26) Doherty, N.; Hancock, S. L.; Kaye, S.; Coleman, C. N.; Shulman, L.;
Marquez, C.; Mariscal, C.; Rampling, R.; Senan, S.; Roemeling, R. V.
Muscle cramping in phase I clinical trials of tirapazamine (SR 4233)
with and without radiation. Int. J. Radiat. Oncol. Biol. Phys. 1994,
2
9, 379–382.
(
27) Rishin, D.; Peters, L.; Hicks, R.; Hughes, P.; Fisher, R.; Hart, R.;
Sexton, M.; D’Costa, I.; von Roemeling, R. Phase I trial of concurrent
tirapazamine, cisplatin, and radiotherapy in patients with advanced
head and neck cancer. J. Clin. Oncol. 2001, 19, 535–542.
References
(
1) Evans, S. M.; Koch, C. J. Prognostic significance of tumor oxygenation
in humans. Cancer Lett. 2003, 195, 1–16, and references therein.
(
28) Rischin, D.; Peters, L.; Fisher, R.; Macann, A.; Denham, J.; Poulsen,
M.; Jackson, M.; Kenny, L.; Penniment, M.; Corry, J.; Lamb, D.;
McClure, B. Tirapazamine, cisplatin, and radiation versus fluorouracil,
cisplatin, and radiation in patients with locally advanced head and
neck cancer: a randomized phase II trial of the Trans-Tasman Radiation
Oncology Group (TROG 98.02). J. Clin. Oncol. 2005, 23, 79–87.
29) Le, Q.-T.; Taira, A.; Budenz, S.; Dorie, M. J.; Goffinet, D. R.; Fee,
W. E.; Goode, R.; Bloch, D.; Koong, A.; Brown, J. M.; Pinto, H. A.
Mature results from a randomized phase II trial of cisplatin plus
(
(
(
2) Harris, A. L. Hypoxia-a key regulatory factor in tumour growth. Nat.
ReV. Cancer 2002, 2, 38–47.
3) Semenza, G. L. HIF-1 and tumor progression: pathophysiology and
therapeutics. Trends Mol. Med. 2002, 8, S62–S67.
4) Pennachietti, S.; Michieli, P.; Galluzzo, M.; Mazzone, M.; Giordano,
S.; Comoglio, P. M. Hypoxia promotes invasive growth by transcrip-
tional activation of the met protooncogene. Cancer Cell 2003, 3, 347–
(
3
61.
(
5) Cairns, R. A.; Hill, R. P. Acute hypoxia enhances spontaneous lymph
node metastasis in an orthotopic murine model of human cervical
carcinoma. Cancer Res. 2004, 64, 2054–2061.
6) Subarsky, P.; Hill, R. P. The hypoxic tumour microenvironment and
metastatic progression. Clin. Exp. Metastases 2003, 20, 237–250.
7) Durand, R. E. The influence of microenvironmental factors during
cancer therapy. In ViVo 1994, 8, 691–702.
5
-fluouracil and radiotherapy with or without tirapazamine in patients
with respectable stage IV head and neck squamous cell carcinomas.
Cancer 2006, 106, 1940–1949.
(
(
30) Durand, R. E.; Olive, P. L. Physiologic and cytotoxic effects of
tirapazamine in tumor-bearing mice. Radiat. Oncol. InVest. 1997, 5,
(
2
13–219.
(
31) Durand, R. E.; Olive, P. L. Evaluation of bioreductive drugs in multicell
spheroids. Int. J. Radiat. Oncol. Biol. Phys. 1992, 22, 689–692.
32) Hicks, K. O.; Fleming, Y.; Siim, B. G.; Koch, C. J.; Wilson, W. R.
Extravascular diffusion of tirapazamine: effect of metabolic consump-
tion assessed using the multicellular layer model. Int. J. Radiat. Oncol.
Biol. Phys. 1998, 42, 641–649.
(8) Tannock, I. F. Conventional cancer therapy: promise broken or promise
delayed. Lancet 1998, 351 (Suppl 2), 9–16.
9) Brown, J. M.; Wilson, W. R. Exploiting tumor hypoxia in cancer
(
(
treatment. Nat. ReV. Cancer 2004, 4, 437–447.
(
10) Nordsmark, M.; Overgaard, M.; Overgaard, J. Pretreatment oxygen-
ation predicts radiation response in advanced squamous cell carcinoma
of the head and neck. Radiother. Oncol. 1996, 41, 31–39.
11) Fyles, A. W.; Milosevic, M.; Wong, R.; Kavanagh, M. C.; Pintilie,
M.; Sun, A.; Chapman, W.; Levin, W.; Manchul, L.; Keane, T. J.;
Hill, R. P. Oxygenation predicts radiation response and survival in
patients with cervix cancer. Radiother. Oncol. 1998, 48, 149–156.
12) Koukourakis, M. I.; Bentzen, S. M.; Giatromanolaki, A.; Wilson, G. D.;
Daley, F. M.; Saunders, M. I.; Dische, S.; Sivridis, E.; Harris, A. L.
(33) Kyle, A. H.; Minchinton, A. I. Measurement of delivery and
metabolism of tirapazamine to tumour tissue using the multilayered
cell culture model. Cancer Chemother. Pharmacol. 1999, 43, 213–
220.
(34) Baguley, B. C.; Hicks, K. O.; Wilson, W. R. Tumour cell cultures in
drug development. In Anticancer Drug DeVelopment; Baguley, B. C.,
Kerr, D. J., Eds.; Academic Press: San Diego, 2002; pp 269–284.
(
(