Chemistry - A European Journal
10.1002/chem.202004449
COMMUNICATION
preparative scale (5 mmol 1) to confirm/establish the absolute
configuration (Table S6). The products were isolated in 4–31%
yield and the optical purities obtained were between 96 and 98%
e.e. Analysis of the optically enriched tetrahydro-β-carbolines by
optical rotation, circular dichroism (CD) spectroscopy and HPLC
showed that all of them possess (R)-configuration (Table S15).
Summarising, a Pictet–Spenglerase was developed for the
stereoselective reaction of tryptamine with benzaldehyde
derivatives. Since benzaldehyde was not accepted at all by the
investigated wild-type enzymes, a substrate walking strategy was
applied, whereby suitable hot spots identified in one STR
backbone (OpSTR) were transferred to another (RsSTR). The
RsSTR variant V176L/V208A turned out to accept a broad scope
of benzaldehyde derivatives, particularly those substituted in
meta- and ortho-position, allowing to obtain (R)-configured
products with up to 99% e.e. The suitable catalyst was created by
testing a rather small library of variants (~100) by combining
rational design, single-site saturation and hot-spot transfer to
other backbones. The concept and the catalyst developed open
new approaches for the synthesis of important bioactive 1-
aryltetrahydro--carbolines in optically enriched form.
Klausen, E. N. Jacobsen, Org. Lett. 2009, 11, 887–890; e) M. J. Wanner,
R. N. S. van der Haas, K. R. de Cuba, J. H. van Maarseveen, H. Hiemstra,
Angew. Chem. Int. Ed. 2007, 46, 7485–7487; Angew. Chem. 2007, 119,
7629–7631.
[
8]
a) T. Mori, S. Hoshino, S. Sahashi, T. Wakimoto, T. Matsui, H.Morita, I.
Abe, Chem. Biol. 2015, 22, 898–906; b) Q. Chen, C. Ji, Y. Song, H.
Huang, J. Ma, X. Tian, J. Ju, Angew. Chem. Int. Ed. 2013, 52, 9980–
9984; Angew. Chem. 2013, 125, 10164–10168; c) K. Koketsu, A. Minami,
K. Watanabe, H. Oguri, H. Oikawa, Curr. Opin. Chem. Biol. 2012, 16,
142–149; d) M. Naoi, W. Maruyama, P. Dostert, K. Kohda, T. Kaiya,
Neurosci. Lett. 1996, 212, 183; e) R. Roddan, J. M. Ward, N. H. Keep, H.
C. Hailes, Curr. Opin. Chem. Biol. 2020, 55, 69–76.
[
9]
Selected publications: a) Y. Wang, N. Tappertzhofen, D. Méndez-
Sánchez, M. Bawn, B. Lyu, J. M. Ward, H. C. Hailes, Angew. Chem. Int.
Ed. 2019, 58, 10120–10125; Angew. Chem. 2019, 131, 10226–10231;
b) R. Roddan, G. Gygli, A. Sula, D. Méndez-Sánchez, J. Pleiss, J. M.
Ward, N. H. Keep, H. C. Hailes, ACS Catal. 2019, 9, 9640−9649; c) B.
R. Lichman, J. Zhao, H. C. Hailes, J. M. Ward, Nat. Commun. 2017, 8,
14883; d) B. M. Ruff, S. Bräse, S. E. O’Connor, Tetrahedron Lett. 2012,
5
3, 1071–1074; e) A. Bonamore, I. Rovardi, F. Gasparrini, P. Baiocco,
M. Barba, C. Molinaro, B. Botta, A. Boffi, A. Macone, Green Chem. 2010,
2, 1623–1627; f) M. Rueffer, H. El-Shagi, N. Nagakura, M. H. Zenk,
FEBS Lett. 1981, 129, 5–9.
1
[
10] Selected references: a) Y. Cai, N. Shao, H. Xie, Y. Futamura, S. Panjikar,
H. Liu, H. Zhu, H. Osada, H. Zou, ACS Catal. 2019, 9, 7443−7448; b) D.
Pressnitz, E.-M. Fischereder, J. Pletz, C. Kofler, L. Hammerer, K. Hiebler,
H. Lechner, N. Richter, E. Eger, W. Kroutil, Angew. Chem. Int. Ed. 2018,
Acknowledgements
5
7, 10683–10687; Angew. Chem. 2018, 130, 10843–10847; c) Y. Cai, H.
Zhu, Z. Alperstein, W. Yu, A. Cherkasov, H. Zou, ACS Chem. Biol. 2017,
2, 3086–3092; b) F. Wu, P. Kercmar, C. Zhang, J. Stöckigt, The
The authors thank Bernd Werner and Prof. Klaus Zangger for
recording the NMR spectra and Prof. Walter Keller for his help
with acquisition of the CD spectra.
1
Alkaloids: Chemistry and Biology, Vol. 76, Elsevier, Amsterdam, 2016,
pp. 1–61; c) E.-M. Fischereder, D. Pressnitz, W. Kroutil, ACS Catal. 2016,
6, 23–30; d) E. Fischereder, D. Pressnitz, W. Kroutil, S. Lutz, Bioorg.
Med. Chem. 2014, 22, 5633–5637; e) F. Wu, H. Zhu, L. Sun, C.
Rajendran, M. Wang, X. Ren, S. Panjikar, A. Cherkasov, H. Zou, J.
Stöckigt, J. Am. Chem. Soc. 2012, 134, 1498–1500; f) P. Bernhardt, A.
R. Usera, S. E. O’Connor, Tetrahedron Lett. 2010, 51, 4400–4402; g) J.
J. Maresh, L.-A. Giddings, A. Friedrich, E. A. Loris, S. Panjikar, B. L.
Trout, J. Stöckigt, B. Peters, S. E. O’Connor, J. Am. Chem. Soc. 2008,
Keywords: Biocatalysis • Asymmetric Catalysis • Pictet–
Spengler Reaction • Enzyme Engineering • -Carbolines
[
1]
2]
M. Baumann, I. R. Baxendale, S. V. Ley, N. Nikbin, Beilstein J. Org.
Chem. 2011, 7, 442–495.
[
C. J. Suckling, J. A. Murphy, A. I. Khalaf, S.-z. Zhou, D. E. Lizos, A. N.
van Nhien, H. Yasumatsu, A. McVie, L. C. Young, C. McCraw, P. G.
Waterman, B. J. Morris, J. A. Pratt, A. L. Harvey, Bioorg. Med. Chem.
Lett. 2007, 17, 2649–2655.
130, 710–723; h) H. Mizukami, H. Nordlöv, S. L. Lee, A. I. Scott,
Biochemistry 1979, 18, 3760–3763; k) J. Stöckigt, M. H. Zenk, J. Chem.
Soc. Chem. Commun. 1977, 646–648.
[
11] E. Eger, A. Simon, M. Sharma, S. Yang, W. B. Breukelaar, G. Grogan,
K. N. Houk, W. Kroutil, J. Am. Chem. Soc. 2020, 142, 792–800.
12] a) T. D. McKnight, C. A. Roessner, R. Devagupta, A. I. Scott, C. L.
Nessler, Nucleic Acids Res. 1990, 18, 4939; b) G. Pasquali, O. J. M.
Goddijn, A. de Waal, R. Verpoorte, R. A. Schilperoort, J. H. C. Hoge, J.
Memelink, Plant Mol. Biol. 1992, 18, 1121–1131.
[
3]
N. Sudzukovic, J. Schinnerl, L. Brecker, Bioorg. Med. Chem. 2016, 24,
588–595.
[
[
4]
5]
A. Pictet, T. Spengler, Ber. Dtsch. Chem. Ges. 1911, 44, 2030–2036.
Recent reviews: a) J. Stöckigt, A. P. Antonchick, F. Wu, H. Waldmann,
Angew. Chem. Int. Ed. 2011, 50, 8538–8564; Angew. Chem. 2011, 123,
[
8
692–8719; b) “Addition to C=N Bonds”: A. Ilari, A. Bonamore, A. Boffi in
[
13] a) Y. Yamazaki, H. Sudo, M. Yamazaki, N. Aimi, K. Saito, Plant Cell
Physiol. 2003, 44, 395–403; b) M. Yamazaki, T. Asano, Y. Yamazaki, S.
Sirikantaramas, H. Sudo, K. Saito, Pure Appl. Chem. 2010, 82, 213–218.
14] a) D. Bracher, T. M. Kutchan, Arch. Biochem. Biophys. 1992, 294, 717–
Science of Synthesis: Biocatalysis in Organic Synthesis 2 (Eds.: K. Faber,
W.-D. Fessner, N. J. Turner), Georg Thieme, Stuttgart, 2014, pp. 159–
1
75; c) M. Chrzanowska, A. Grajewska, M. D. Rozwadowska, Chem.
[
Rev. 2016, 116, 12369–12465; d) N. Glinsky-Olivier, X. Guinchard,
Synthesis 2017, 49, 2605–2620; e) M. M. Heravi, V. Zadsirjan, M. Malmir,
Molecules 2018, 23, 943.
7
23; b) N. Hampp, M. H. Zenk, Phytochemistry 1988, 27, 3811–3815; c)
T. M. Kutchan, N. Hampp, F. Lottspeich, K. Beyreuther, M. H. Zenk,
FEBS Lett. 1988, 237, 40–44.
[
6]
7]
Recent example of a Pictet–Spengler reaction forming a 7-membered
ring: a) S. Elangovan, A. Afanasenko, J. Haupenthal, Z. Sun, Y. Liu, A.
K. H. Hirsch, K. Barta, ACS Cent. Sci. 2019, 5, 10, 1707–1716; Further
example: B. Kundu, D. Sawant, P. Partani, A. P. Kesarwani, Org. Chem.
[
[
15] a) Z. Chen, H. Zhao, J. Mol. Biol. 2005, 348, 1273–1282; b) H. Li, J. C.
Liao, ACS Synth. Biol. 2014, 3, 13–20; c) C. K. Savile, J. M. Janey, E. C.
Mundorff, J. C. Moore, S. Tam, W. R. Jarvis, J. C. Colbeck, A. Krebber,
F. J. Fleitz, J. Brands, P. N. Devine, G. W. Huisman, G. J. Hughes,
Science 2010, 329, 305–309; d) J. T. Payne, C. B. Poor, J. C. Lewis,
Angew. Chem. Int. Ed. 2015, 54, 4226–4230; Angew. Chem. Int. Ed.
2005, 70, 4889–4892
[
For selected examples of asymmetric Pictet–Spengler reactions see: a)
Z. Zhou, A. X. Gao, S. A. Snyder, J. Am. Chem. Soc. 2019, 141, 7715–
2015, 127, 4300–4304.
7
720; b) S.-G. Wang, Z.-L. Xia, R.-Q. Xu, X.-J. Liu, C. Zheng, S.-L. You,
Angew. Chem. Int. Ed. 2017, 56, 7440–7443; Angew. Chem. 2017, 129,
548–7551; c) E. Mons, M. J. Wanner, S. Ingemann, J. H. van
Maarseveen, H. Hiemstra, J. Org. Chem. 2014, 79, 7380–7390; d) R. S.
16] Conceptually structure-based approaches for directed evolution include
e.g. CAST, ISM, FRISM. See: a) M. T. Reetz, M. Bocola, J. D. Carballeira,
D. Zha, A. Vogel, Angew. Chem. Int. Ed. 2005, 44, 4192–4196; Angew.
Chem. 2005, 117, 4264–4268; b) M. T. Reetz, L.-W. Wang, M. Bocola,
7
This article is protected by copyright. All rights reserved.