Page 5 of 8
ACS Catalysis
955 – 962; (c) Schrock, R. R. Catalytic Reduction of Dinitrogen to
ing Molecular MetalꢀSupport Interactions for H2 and N2 Activation.
Coord. Chem. Rev. 2017, 334, 100 – 111.
Ammonia by Molybdenum: Theory versus Experiment. Angew.
Chem. Int. Ed. 2008, 47, 5512 – 5522; (d) Eizawa, A.; Arashiba, K.;
Tanaka, H.; Kuriyama, S.; Matsuo, Y.; Nakajima, K.; Yoshizawa, K.;
Nishibayashi, Y. Remarkable Catalytic Activity of Dinitrogenꢀ
bridged Dimolybdenum Complexes Bearing NHCꢀbased PCPꢀpincer
Ligands toward Nitrogen Fixation. Nat. Comm. 2017, 8, 14874; (e)
Kuriyama, S.; Arashiba, K.; Tanaka, H.; Matsuo, Y.; Nakajima, K.;
Yoshizawa, K.; Nishibayashi, Y. Direct Transformation of Molecular
Dinitrogen into Ammonia Catalyzed by Cobalt Dinitrogen Complexes
Bearing Anionic PNP Pincer Ligands. Angew. Chem. Int. Ed. 2016,
55, 14291 – 14295; (f) Arashiba, K.; Kinoshita, E.; Kuriyama, S.;
Eizawa, A.; Nakajima, K.; Tanaka, H.; Yoshizawa, K.; Nishibayashi,
Y. Catalytic Reduction of Dinitrogen to Ammonia by Use of Molybꢀ
denumꢀnitride Complexes Bearing a Tridentate Triphosphine as Cataꢀ
lysts. J. Am. Chem. Soc. 2015, 137, 5666 – 5669; (g) Arashiba, K.;
Miyake, Y.; Nishibayashi, Y. A Molybdenum Complex Bearing PNPꢀ
type Pincer Ligands Leads to the Catalytic Reduction of Dinitrogen
into Ammonia. Nat. Chem. 2011, 3, 120 – 125; (h) Kuriyama, S.;
Arachiba, K.; Nakajima, K.; Tanaka, H.; Yoshizawa, K.; Nishibayashi,
Y. Nitrogen Fixation Catalyzed by Ferroceneꢀsubstituted Dinitrogenꢀ
bridged Dimolybdenumꢀdinitrogen Complexes: Unique BeHavior of
Ferrocene Moiety as Redox Active Site. Chem. Sci. 2015, 6, 3940 –
3951; (i) Chalkley, M. J.; Del Castillo, T. J.; Matson, B. D.; Roddy, J.
P.; Peters, J. C. Catalytic N2ꢀtoꢀNH3 Conversion by a Fe at Lower
Driving Force: A Proposed Role for Metalloceneꢀmediated PCET.
ACS Cent. Sci. 2017, 3, 217 – 223; (j) Anderson, J. S.; Rittle, J.; Peꢀ
ters, J. C. Catalytic Conversion of Nitrogen to Ammonia by an Iron
Model Complex. Nature, 2013, 501, 84 – 88; (k) Del Castillo, T. J.;
Thompson, N. B.; Suess, D. L. M.; Ung, G.; Peters, J. C. Evaluating
Molecular Cobalt Complexes for the Conversion of N2 to NH3. Inorg.
Chem. 2015, 54, 9256 – 9262; (l) Del Castillo, T. J.; Thompson, N.
B.; Peters, J. C. A Synthetic Singleꢀsite Fe Nitrogenase: High Turnoꢀ
ver, Freezeꢀquench 57Fe Mössbauer Data, and a Hydride Resting
State. J. Am. Chem. Soc. 2016, 138, 5341 – 5350; (m) Hill, P. J.;
Doyle, L. R.; Crawford, A. D.; Myers, W. K.; Ashley, A. E. Selective
Catalytic Reduction of N2 to N2H4 by a Simple Fe Complex. J. Am.
Chem. Soc. 2016, 138, 13521 – 13524; (n) Fajardo Jr., J.; Peters, J. C.
Catalytic Nitrogenꢀtoꢀammonia Conversion by Osmium and Rutheniꢀ
um Complexes. J. Am. Chem. Soc. 2017, 139, 16105 – 16108; (o)
Arashiba, K.; Eizawa, A.; Tanaka, H.; Nakajima, K.; Yoshizawa, K.;
Nishibayashi, Y. Catalytic Nitrogen Fixation via Direct Cleavage of
Nitrogenꢀnitrogen Triple Bond of Molecular Dinitrogen under Ambiꢀ
ent Conditions. Bull. Chem. Soc. Jpn. 2017, 90, 1111 – 1118.
(5) (a) Shiina, K. Reductive Silylation of Molecular Nitrogen via
Fixation to Tris(trialkylsilyl)amine. J. Am. Chem. Soc. 1972, 94, 9266
– 9267; (b) Komori, K.; Oshita, H.; Mizobe, Y.; Hidai, M. Preparation
and Properties of Molybdenum and Tungsten Dinitrogen Complexes.
25. Catalytic Conversion of Molecular Nitrogen into Silylamines
Using Molybdenum and Tungsten Dinitrogen Complexes. J. Am.
Chem. Soc. 1989, 111, 1939 – 1940; (c) Mori, M. Activation of Niꢀ
trogen for Organic Synthesis. J. Organomet. Chem. 2004, 689, 4210 –
4227.
(6) (a) Tanaka, H.; Sasada, A.; Kouno, T.; Yuki, M.; Miyake, Y.;
Nakanishi, H.; Nishibayashi, Y.; Yoshizawa K. Molybdenumꢀ
catalyzed Transformation of Molecular Dinitrogen into Silylamine:
Experimental and DFT Study on the Remarkable Role of Ferroꢀ
cenyldiphosphine Ligands. J. Am. Chem. Soc. 2011, 133, 3498 –
3506; (b) Imayoshi, R.; Tanaka, H.; Matsuo, Y.; Yuki, M.; Nakajima,
K.; Yoshizawa, K.; Nishibayashi, Y. Cobaltꢀcatalyzed TransForꢀ
mation of Molecular Dinitrogen into Silylamine under Ambient Reacꢀ
tion Conditions. Chem. Eur. J. 2015, 21, 8905 – 8909; (c) Yuki, M.;
Miyake, Y.; Nishibayashi, Y.; Wakiji, I.; Hidai, M. Synthesis and
Reactivity of Tungstenꢀ and Molybdenumꢀdinitrogen Complexes
Bearing Ferrocenyldiphosphines toward Protonolysis. Organometal-
lics 2008, 27, 3947 – 3953.
1
2
3
4
5
6
7
8
(8) (a) Prokopchuk, D. E.; Wiedner, E. S.; Walter, E. D.; Popescu, C.
V.; Piro, N. A.; Kassel, W. S.; Bullock, R. M.; Mock, M. T. Catalytic
N2 Reduction to Silylamines and Thermodynamics of N2 Binding at
Square Planar Fe. J. Am. Chem. Soc. 2017, 139, 9291 – 9301; (b)
Araake, R.; Sakadani, K.; Tada, M.; Sakai, Y.; Ohki, Y. [Fe4] and
[Fe6] Hydride Supported by Phosphines: Synthesis, Characterization,
and Application in N2 Reduction. J. Am. Chem. Soc. 2017, 139, 5596
– 5606; (c) Ung, G.; Peters, J. C. LowꢀTemperature N2 Binding to
Twoꢀcoordinate L2FeO Enables Reductive Trapping of L2FeN2ꢀ and
NH3 Generation. Angew. Chem. Int. Ed. 2015, 54, 532 – 535; (d)
Yuki, M.; Tanaka, H.; Sasaki, K.; Miyake, Y.; Yoshizawa, K.; Nishiꢀ
bayashi, Y. Iron Catalyzed Transformation of Molecular Dinitrogen
into Silylamine under Ambient Reaction Conditions. Nat. Commun.
2012, 3, 1254; (e) Imayoshi, R.; Nakajima, K.; Nishibayashi, Y. Vaꢀ
nadiumꢀcatalyzed Reduction of Molecular Dinitrogen into Silylamine
under Ambient Reaction Conditions. Chem. Lett., 2017, 46, 466 –
468; (f) Imayoshi, R.; Nakajima, K.; Takaya, J.; Iwasawa, N.; Nishiꢀ
bayashi, Y. Synthesis and Reactivity of Ironꢀ and Cobaltꢀdinitrogen
Complexes Bearing PSiPꢀtype Pincer Ligands toward Nitrogen Fixaꢀ
tion. Eur. J. Inorg. Chem., 2017, 32, 3769 – 3778; (g) Kendall, A. J.;
Johnson, S. I.; Bullock, R. M.; Mock, M. T. Catalytic Silylation of N2
and Synthesis of N2H4 by Net Hydrogen Atom Transfer Reaction
using a Chromium P4 Macrocycle. J. Am. Chem. Soc. 2018, 140, DOI:
10.1021/jacs.7b11132.
(9) (a) Suzuki, T.; WasadaꢀTsutsui, Y.; Ogawa, T.; Inomata, T.; Ozaꢀ
wa, T.; Sakai, Y.; Fryzuk M. D.; Masuda, H. N2 Activation by an Iron
Complex with a Strong Electronꢀdonating Iminophosphorane Ligand.
Inorg. Chem. 2015, 54, 9271 – 9281; (b) Hein, N. M.; Suzuki, T.;
Ogawa, T.; Fryzuk, M. D. Low Coordinate Iron Derivatives Stabiꢀ
lized by a βꢀDiketiminate Mimic. Synthesis and Coordination Chemꢀ
istry of Enamidophospinimine Scaffolds to Generate Diiron Dinitroꢀ
gen Complexes. Dalton Trans. 2016, 45, 14697 – 14708.
(10) (a) Ding, K.; Brennessel, W. W.; Holland, P. L. Threeꢀcoordinate
and Fourꢀcoordinate Cobalt Hydride Complexes That React with
Dinitrogen. J. Am. Chem. Soc. 2009, 131, 10804 – 10805 ; (b) Ding,
K.; Pierpont, A. W.; Brennessel, W. W.; LukatꢀRodgers, G.; Rodgers,
K. R.; Cundari, T. R.; Bill, E.; Holland, P. L. Cobaltꢀdinitrogen Comꢀ
plexes with Weakened NꢀN Bonds. J. Am. Chem. Soc. 2009, 131,
9471 – 9472.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(11) Dugan, T. R.; Sun, X.; RybakꢀAkimova, E. V.; OlantunjiꢀOjo,
O.; Cundari, T. R.; Holland, P. L. A Masked Twoꢀcoordinate Coꢀ
balt(I) Complex That Activates CꢀF Bonds. J. Am. Chem. Soc. 2011,
133, 12418 – 12421.
(12) The disorder in 2 is manifested in the displacement of 10 % of
the Co atom out of the plane towards this dinitrogen moiety; see Supꢀ
porting Information.
(13) Co[SiPNP] = Co[N(SiMe2CH2PtBu2)2] reported in (a) Ingleson,
M.; Fan, H.; Pink, M.; Tomaszewski, J.; Caulton, K. G. Three Coorꢀ
dinate Co(I) Provides Access to Unsaturated DihydridoꢀCo(III) and
Sevenꢀcoordinate Co(IV). J. Am. Chem. Soc. 2006, 128, 1804 – 1805;
(b) Ingleson, M. J.; Pink, M.; Fan, H.; Caulton, K. G. Exploring the
Reactivity of Fourꢀcoordinate PNPCoX with Access to Threeꢀ
coordinate Spin Triplet PNPCo. Inorg. Chem. 2007, 46, 10321 –
10334; (c) Ingleson, M. J.; Pink, M.; Fan, H.; Caulton, K. G. Redox
Chemistry of the Triplet Complex (PNP)CoI. J. Am. Chem. Soc. 2008,
128, 4262 – 4276; for the related carbon backbone Co[PNP], where
PNP = N(CH2CH2PPri2)2, see (d) Rozenel, S. S.; Padilla, R.; Camp C.;
Arnold, J. Unusual Activation of H2 by Reduced Cobalt Complexes
Supported by a PNP Pincer Ligand. Chem. Commun., 2014, 50, 2612
– 2614.; (e) Rozenel, S. S. ; Padilla, R. M.; Arnold, J. Chemistry of
Reduced Monomeric and Dimeric Cobalt Complexes Supported by a
PNP Pincer Ligand. Inorg. Chem., 2013, 52, 11544 – 11550.
(14) See Supporting Information for analytical procedures, synthesis
details, optimization experiments, computational methods and results,
and detailed product analyses.
(7) (a) Siedschlag, R. B.; Bernales, V.; Vogiatzis, K. D.; Planas, N.;
Clouston, L. J.; Bill, E.; Gagliardi, L.; Lu, C. C. Catalytic Silylation
of Dinitrogen with a Dicobalt Complex. J. Am. Chem. Soc. 2015, 137,
4638ꢀ4641; (b) Cammarota, R. C.; Clouston, L. J.; Lu, C. C. Leveragꢀ
(15) There are a number of different protocols for determining the
yield of N(SiMe3)3 in this catalytic reaction; while some measure the
amount of N(SiMe3)3 directly by GCꢀMS,6,7 others hydrolyze with
excess HCl to generate NH4Cl and either analyze by the indophenol
ACS Paragon Plus Environment