À
6À
À
TB { PF o Cl , indicating that small anions are likely to
block the reaction site for dioxygen.
To summarize the results, we have shown that the catalytic
effect of tetraphenylporphyrin on the reduction of molecular
oxygen can be finely tuned by the acid-to-catalyst molar ratio.
The catalytic mechanism involves the binding of O2 to the
diprotonated form of tetraphenylporphyrin, in competition
À
with the counteranion present. We conclude that TB cannot
be classified as a non-coordinating anion, on the contrary
8
,10
to the previous assumption.
2
The activation of O by
coordination to the acidic moiety of a metal-free porphyrin
1
5
or the imidazolium ring appears to be an alternative catalytic
route to the redox catalysis of the O reduction by metal
2
porphyrins. This investigation is relevant to studies of the
2
+
À
Fig. 4 DFT/M05-2x optimized structure of {(H
4
TPP )Á(TB )ÁO
2
}
non-metal sites binding O in biological enzyme-catalyzed
2
16,17
˚
system; the averaged O–H distances were calculated to be 2.338 A.
oxidations.
Mechanistic considerations are supported by
the DFT calculations.
À
Table 1 DFT stabilization energies (eV) of X or O
(H
2
in the complexes
We are grateful to Grant Agency of the Czech Republic
2
+
À
2+
À
{
4
TPP )Á(X )
2
} or {(H
4
TPP )Á(X )ÁO
2
}, respectively, with PCM
solvent correction. BSSE corrected values in vacuum are given
in parentheses
(
grant no. P208/11/0697), EPFL and European COST Action
for financial support.
À
À
6À
À
TB
Notes and references
Complex/X
Cl
PF
TPP )Á(XÀ)
2
+
1 J. T. Groves, K. Shalyaev and J. Lee, in The Porphyrin Handbook,
ed. K. M. Kadish, K. M. Smith and R. Guilard, Academic Press,
San Diego, CA, 2000, vol. 4, pp. 17–40.
{
(H
(H
4
4
2
}
0.971
0.914
0.759
(
4.222)
0.112
0.099)
(3.489)
0.101
(0.096)
(2.514)
0.118
(0.110)
2
+
À
{
TPP )Á(X )ÁO
2
}
2
(a) S. Fukuzumi, S. Mochizuki and T. Tanaka, Inorg. Chem., 1989,
8, 2459; (b) S. Fukuzumi, K. Okamoto, C. P. Gros and
R. Guilard, J. Am. Chem. Soc., 2004, 126, 10441.
(
2
The binding and activation of
À
O
2
in the complex
3
(a) I. Hatay, B. Su, F. Li, M. Mendez, T. Khoury, C. P. Gros,
J. M. Barbe, M. Ersoz, Z. Samec and H. H. Girault, J. Am. Chem.
Soc., 2009, 131, 13453; (b) B. Su, I. Hatay, A. Trojanek, Z. Samec,
T. Khoury, C. P. Gros, J. M. Barbe, A. Daina, P.-A. Carrupt and
H. H. Girault, J. Am. Chem. Soc., 2010, 132, 2655; (c) R.
Partovi-Nia, B. Su, F. Li, C. P. Gros, J. M. Barbe, Z. Samec and
H. H. Girault, Chem.–Eur. J., 2009, 15, 2335.
2
+
{
(H
4
TPP )Á(X )ÁO
2
}, and the effects of ion pairing with the
À
À
À
À
counteranion X = Cl , PF or TB , as well as the solvent
6
À
effect on the stabilization energy of O and of X were treated
2
by the quantum chemical DFT method (ESIw). The optimized
2
+
À
structure of {(H TPP )Á(TB )ÁO } is depicted in Fig. 4;
4
2
À
À
6
. The
4 (a) E. Song, C. Shi and F. C. Anson, Langmuir, 1998, 14, 4315;
b) C. Shi and F. C. Anson, Inorg. Chem., 1998, 37, 1037.
analogous structures were found for Cl and PF
stabilization energies were calculated at the M05-2X/
-311++G** level for the M05-2X/6-31G* optimized
geometries, following the procedure that has recently been
(
5
(a) R. D. Jones, D. A. Summerville and F. Basolo, Chem. Rev.,
1979, 79, 139; (b) J. P. Collman, R. Boulatov, C. J. Sunderland and
L. Fu, Chem. Rev., 2004, 104, 561.
6
1
4
6 J. P. Collman, P. S. Wagenknecht and J. E. Hutchison, Angew.
Chem., Int. Ed. Engl., 1994, 33, 1537; J. Rosenthal and
D. G. Nocera, Acc. Chem. Res., 2007, 40, 543.
7 D. Rutkowska-Zbik, R. Tokarz-Sobieraj and M. Witko, J. Chem.
Theory Comput., 2007, 3, 914.
8 I. Hatay, B. Su, M. A. Mendez, C. Corminboeuf, T. Khoury,
C. P. Gros, M. Bourdillon, M. Meyer, J. M. Barbe, M. Ersoz,
S. Zalis, Z. Samec and H. H. Girault, J. Am. Chem. Soc., 2010,
132, 13733.
used to evaluate weak interactions in the Lewis pairs. Table 1
demonstrates that the stabilization energies of O (i.e., the
2
2
+
À
work required to extract O
2
from {(H
4
TPP )Á(X )ÁO
2
}) are
somewhat lower than those calculated for the end-on O
2
7
adduct with Co porphyrin (0.28 eV), which is known to
2
catalyze the oxygen reduction to H O and/or H O. It is
2
2
2
+
2
À
worth noticing that the binding of O in {(H TPP )Á(TB )Á
2
4
9
´
A. Trojanek, J. Langmaier, B. Su, H. H. Girault and Z. Samec,
Electrochem. Commun., 2009, 11, 1940.
2
O } polarizes the O–O bond; the Mulliken charge at the O
atom attached to H is À0.091, the remote O atom carries the
1
0 (a) G. De Luca, A. Romeo, L. M. Scolaro, G. Ricciardi and
A. Rosa, Inorg. Chem., 2007, 46, 5979; (b) R. Karaman and
T. C. Bruice, Inorg. Chem., 1992, 31, 2455.
charge of +0.251. The electron delocalization should facilitate
the activation of O
5
porphyrin. As expected, the stabilization energy of X (i.e.,
2
, similar to the complex with a metal
À
¨
11 Y. Zhang, M. X. Li, M. Y. Lu, R. H. Yang, F. Liu and K. A. Li,
J. Phys. Chem. A, 2005, 109, 7442.
À
2+
À
the work required to extract X from {(H
4
TPP )Á(X )
2
})
1
2 B. Su, F. Li, R. Partovi-Nia, C. Gros, J.-M. Barbe, Z. Samec and
H. H. Girault, Chem. Commun., 2008, 5037.
decreases considerably with increasing size of the counter-
anion. The data in Table 1 also show that the inclusion of the
solvent effect substantially diminishes the stabilization
energies of the counteranions, while the stabilization
1
1
3 P. Luhring and A. Schumpe, J. Chem. Eng., 1989, 34, 250.
4 G. Er o+ s, H. Mehdi, I. Pa
pai, T. A. Rokob, P. Kiraly, G. Tarkanyi
´ ´ ´ ´
and T. Soos, Angew. Chem., Int. Ed., 2010, 49, 6559.
´
15 D. S. Choi, D. H. Kim, U. S. Shin, R. R. Deshmukh, S. Lee and
C. E. Song, Chem. Commun., 2007, 3467.
16 P. F. Widboom, E. N. Fielding, Y. Liu and S. D. Bruner, Nature,
energy for O2 varies only slightly. The difference between
À
the stabilization energies of X and O
2
points to a much
2007, 447, 342.
7 Y. Goto and J. P. Klinman, Biochemistry, 2002, 41, 13637.
stronger bond of the counteranion, which follows the order,
1
5
448 Chem. Commun., 2011, 47, 5446–5448
This journal is c The Royal Society of Chemistry 2011