Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
Rhodium-Catalyzed Desulfitative Heck-Type Reactions
FULL PAPER
[PdCl2(PPh3)2] would improve the yield of the desulfitative
vinylations. Our exploratory experiments started with the
coupling of 1-naphthalenesulfonyl chloride (1; 2 mmol) and
butyl acrylate (2; 5.5 mmol) in the presence of
[PdCl2(PhCN)2] (3 mol%), Me(oct)3NCl (15 mol%), and
K2CO3 (4 mmol) in m-xylene. After 4 h at 1408C a 53%
chloride (Table 1, entry 1 versus 2). Bulky organic bases
were not suitable in our examples, whereas an inorganic
base such as K2CO3 led to higher yields (Table 1, entry 1
versus 3 and 4). Addition of electron-rich ligands such as
4,[15] 5,[16a] and 6[16b] increased the yields. The best results
were obtained by using the palladacycle 7,[17] developed by
Herrmann et al., as catalyst (Table 1, entries 5, 8–10). When
using low boiling polar solvents, the yields were lower than
in boiling m-xylene (Table 1, entries 6 and 7).
yield of coupling product
3 was obtained (Table 1,
entry 1).[9d] It is known that phase-transfer catalysts can be
beneficial to Mizoroki–Heck-type reactions.[11–14] By screen-
ing various phase-transfer catalysts we have found that the
bulky trioctylmethylammonium chloride leads to better re-
sults than the smaller tetrabutyl- or tetraethylammonium
Table 1. Catalyst, bases, and PTC screening.
Entry
Pd source (Concn. [mol%])
Base
Yield [%][a]
We applied these optimized conditions to the desulfitative
coupling of electron-rich, electron-neutral, and electron-
poor sulfonyl chlorides with a wide variety of olefins. For
good yields of Mizoroki–Heck-type products 10 from the re-
action of sulfonyl chlorides (8) (Table 2) with butyl acrylate,
styrene, 1-hexene, and phenylvinylsulfone (9), the reaction
temperature must be higher than 1208C (Table 2, entry 5).
In most cases the reaction is over after 4–5 h, except when
unreactive olefins such as 1-hexene are used. In the latter
case, the reaction with 4-acetylbenzenesulfonyl chloride
1
2
3
4
5
6
7
8
[PdCl2(PhCN)2] (3)
[PdCl2(PhCN)2] (3)
[PdCl2(PhCN)2] (3)
[PdCl2(PhCN)2]/4 (3/6)
[PdCl2(PhCN)2]/4 (3/6)
[PdCl2(PhCN)2]/4 (3/6)
[Pd2dba3]/4 (1.5/6)
[PdCl2(PhCN)2]/5 (3/6)
[PdCl2(PhCN)2]/6 (3/6)
palladacycle 7 (0.1)
K2CO3
K2CO3
Et3N
Cy2NMe
K2CO3
K2CO3
K2CO3
K2CO3
K2CO3
K2CO3
53
15[b,c]
30
<20
78
45[d]
54[d]
80
9
10
78
90[e]
[a] Yields of coupling products determined after flash chromatography.
[b] Bu4NCl was used instead of Me(oct)3NCl. [c] Yield was 5 mol% when
Et4NCl was used instead of Me(oct)3NCl. [d] The mixture was refluxed in
THF instead of m-xylene, starting material and side product were ob-
served after 24 h. [e] Yield was also 90% with 0.4 mol% of palladacycle
7.
Table 2. The palladium-catalyzed desulfitative Mizoroki–Heck type of
reaction of various sulfonyl chlorides with terminal alkenes.
Entry
R
R1
Yield [%][a]
90[b]
83
Abstract in French: De nouvelles conditions sont rapporteꢀs
pour les couplages dꢀsulfitants du type Mizoroki–Heck des
chlorures dꢁarꢂnesulfonyles et trifluoromꢀthanesulfonyle avec
des olꢀfines mono- et disubstitueꢀs. La mꢀthode permet la
synthꢂse de (E)-alcꢂnes 1,2-disubstituꢀs avec haute stꢀrꢀosꢀ-
lectivitꢀ et dꢁalkꢂnes 1,1,2-trisubstituꢀs avec des stꢀrꢀosꢀlecti-
vitꢀs E/Z variant de 12:1 ꢃ 21:1. La palladacycle de Herr-
mann ꢃ 0.1 mol% est suffisant pour catalyser ces reactions
qui peuvent engager des chlorures de sulfonyles et des alcꢂnes
soit riches ou pauvres en ꢀlectron. Si des conditions sans
phosphine et sans base sont requises, 1 mol% de
[RhCl(C2H4)2] est un excellent catalyseur pour ces couplages
dꢀsulfitants. Contrairement ꢃ ce qui est rapportꢀ pour des rꢀ-
actions analogues catalysꢀes par [RuCl2(PPh3)2] et qui impli-
quent des intermꢀdiaires radicalaires, les couplages du type
Mizoroki–Heck dꢀsulfitants catalysꢀs par des complexes de
palladium ou de rhodium ne sont pas inhibꢀs par des piꢂges
ꢃ radicaux. De plus, les sulfones qui peuvent se former par
sulfonylation des alcꢂnes (60oC) ne sont pas dꢀsulfitꢀes ꢃ
plus haute tempꢀrature en prꢀsence des catalyseurs au Pd ou
au Rh.
1
2
3
4
5
6
7
8
1-naphthyl
1-naphthyl
COOnBu
Ph
COOnBu
Ph
COOnBu
nBu
COOnBu
COOnBu
COOnBu
COOnBu
COOnBu
SO2Ph
COOnBu
COOnBu
Ph
4-methylphenyl
4-methylphenyl
4-acetylphenyl
4-acetylphenyl
4-trifluorophenyl
4-fluorophenyl
4-methoxyphenyl
3-cyanophenyl
4-nitrophenyl
4-trifluorophenyl
4-(pyrazol-1-yl)phenyl
2,4,6-trimethylphenyl
trifluoromethyl
trifluoromethyl
76
80[c]
74[d]
51[e,f]
72
70[g]
75
9
10
11
12
13
14
15
16
73[h]
78
49
40
45[i]
50[j]
32[j]
COOnBu
[a] Yields of coupling products determined after flash chromatography.
[b] Yield 53% according to ref. [9d]. [c] Yield 75% with 3%
[PdCl2(PhCN)2], 6% ligand 5 instead of palladacycle 7. [d] Yield 35% in
THF under reflux. [e] In p-xylene under reflux, 21 h and with five equiva-
lents of alkene. [f] Yield 51% in THF under reflux with 3%
[PdCl2(PhCN)2], 6% ligand 5 instead of palladacycle 7. [g] Yield 64%
with 3% [PdCl2(PhCN)2], 6% ligand
[h] Under reflux for 13 h. [i] Under reflux for 24 h. [j] Using a microwave
5 instead of palladacycle 7.
oven at 1508C for 10 h and with five equivalents of alkene.
Chem. Eur. J. 2005, 11, 2633 – 2641
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2635