Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
2 (a) P. Anzenbacher, Top. Heterocycl. Chem., 2010, 24, 205;
(b) J. L. Sessler, N. M. Barkey, G. D. Pantos and V. M. Lynch,
New J. Chem., 2007, 31, 646; (c) P. Anzenbacher, Top. Heterocycl.
Chem., 2010, 24, 237; (d) H. Maeda, Top. Heterocycl. Chem., 2010,
24, 103.
3 (a) J. L. Sessler and P. A. Gale, in The Porphyrin Handbook,
ed. K. M. Kadish, K. M. Smith and R. Guilard, Academic Press,
San Diego, CA and Burlington, MA, 2000, vol. 6, pp. 257–278;
(b) P. A. Gale and C.-H. Lee, Top. Heterocycl. Chem., 2010, 24, 39;
(c) J. P. Hill, F. D’Souza and K. Ariga, in Supramolecular
Chemistry: From Molecules to Nanomaterials, ed. P. A. Gale and
J. W. Steed, John Wiley & Sons, 2012, pp. 1713–1730.
4 (a) Phthalocyanines: Properties and Applications, ed. C. C. Leznoff
and A. P. B. Lever, Wiley-VCH, Weinheim, 1989–1996, vol. 1ꢀ4;
(b) C. G. Claessens, U. Hahn and T. Torres, Chem. Rec., 2008,
8, 75.
5 For example: (a) L. Fu, F.-L. Jiang, D. Fortin, P. D. Harvey and
Y. Liu, Chem. Commun., 2011, 47, 5503; (b) J. Y. Lee, E. J. Cho,
S. Mukamel and K. C. Nam, J. Org. Chem., 2004, 69, 943;
(c) T. Mizuno, W. H. Wei, L. R. Eller and J. L. Sessler, J. Am.
Chem. Soc., 2002, 124, 1134; (d) J. L. Sessler, H. Maeda,
T. Mizuno, V. M. Lynch and H. Furuta, Chem. Commun., 2002,
862.
Fig. 3 Cyclic voltammograms in benzonitrile/(0.1 M n-Bu4N ClO4).
(a) 1. (b) 2. (c) 1 in the presence of increasing amounts of fluoride
anions (up to 10 eq.). (d) 2 in the presence of increasing amounts of Fꢀ
(up to 10 eq.).
6 A. L. Schumacher, J. P. Hill, K. Ariga and F. D’Souza, Electrochem.
Commun., 2007, 9, 2751.
In conclusion, we have synthesized for the first time a
phthalocyanine-type molecule, 1, symmetrically substituted at its
periphery with eight antioxidant 3,5-di-t-butyl-4-hydroxyphenyl
groups. The phenol groups of 1 confer on it sensing abilities
in terms of its increased fluorescence emission when it is
deprotonated by basic anions especially fluoride, acetate or
phosphate. In addition, 1 precursor 2 is also active as a
fluorescent sensor for basic anions although it contrasts with
1 in that its fluorescence is attenuated. 1 and 2 also exhibit
electrochemical responses which are modified in the presence
of fluoride anions making these compounds also interesting as
potential redox anion sensing elements. Apart from these
features, 1 is an unusual molecule bearing multiple phenol
groups that can exist in several stable forms including as
phenoxyl radicals. This implies potential applications for 1
as a molecular memory element since it can in principle possess
many redox states although these may be subject to delocali-
zation. We are currently investigating the redox properties of 1
and some unsymmetrically substituted derivatives and metal
complexes at the single molecule level.
7 J. P. Hill, A. L. Schumacher, F. D’Souza, J. Labuta, C. Redshaw,
M. J. R. Elsegood, M. Aoyagi, T. Nakanishi and K. Ariga, Inorg.
Chem., 2006, 45, 8288.
8 (a) V. Novakova, M. Miletin, K. Kopecky and P. Zimcik,
Chem.–Eur. J., 2011, 17, 14273; (b) V. Novakova, E. H Mørkved,
M. Miletin and P. Zimcik, J. Porphyrins Phthalocyanines, 2010,
14, 582.
9 (a) A. J. Golder, L. R. Milgrom, K. B. Nolan and D. C. Povey,
J. Chem. Soc., Chem. Commun., 1987, 1788; (b) J. P. Hill,
I. J. Hewitt, C. E. Anson, A. K. Powell, A. L. McCarthy,
P. Karr, M. Zandler and F. D’Souza, J. Org. Chem., 2004,
69, 5861; (c) H. Kurata, T. Tanaka and M. Oda, Chem. Lett.,
1999, 28, 749; (d) H. Kurata, Y. Takehara, T. Kawase and M. Oda,
Chem. Lett., 2003, 32, 538; (e) H. Kurata, S. Kim, K. Matsumoto,
T. Kawase and M. Oda, Chem. Lett., 2007, 36, 386.
10 (a) A. Shundo, J. P. Hill and K. Ariga, Chem.–Eur. J., 2009,
15, 2486; (b) S. Ishihara, J. P. Hill, A. Shundo, K. Ohkubo,
S. Fukuzumi, M. R. J. Elsegood, S. J. Teat and K. Ariga, J. Am.
Chem. Soc., 2011, 133, 16119.
11 2 was prepared from 5,6-dichloropyrazine-2,3-dicarbonitrile by
nucleophilic substitution using 2,6-di-t-butylphenol.
substituted derivative 5-chloro-6-(3,5-di-t-butyl-4-hydroxyphenyl)
pyrazine-2,3-dicarbonitrile, 3, was also isolated and characterised12
A mono-
.
12 See Electronic Supplementary Information.
13 S. Makhseed, F. Ibrahim, C. G. Bezzu and N. B. McKeown,
Tetrahedron Lett., 2007, 48, 7358.
14 (a) G. J. Clarkson, P. Humberstone and N. B. McKeown, Chem.
Commun., 1997, 1979; (b) M. Brewis, G. J. Clarkson,
P. Humberstone, S. Makhseed and N. B. McKeown, Chem.–Eur. J.,
1998, 4, 1633.
15 S. Hayashi, J. Sung, Y. M. Sung, Y. Inokuma, D. Kim and
A. Osuka, Angew. Chem., Int. Ed., 2011, 50, 3253.
16 Synthesis and properties of the metal complexes of 1 will be
reported elsewhere.
17 Weak fluorescence bands at 680 nm may be due to a small degree
of deprotonation of 1 caused by the basicity of the solvent used.
18 Benzonitrile was used as solvent since 1,2-dichlorobenzene under-
goes substitution reactions with Fꢀ anions when irradiated with
UV light. It remains unclear whether this process is mediated by 1.
19 This colour is characteristic of galvinoxyl-type radicals. See
E. L. Altwicker, Chem. Rev., 1967, 67, 475.
This research was partly supported by the World Premier
International Research Center Initiative on Materials Nano-
architectonics from MEXT, Japan, and by the Core Research
for Evolutional Science and Technology (CREST) program of
JST, Japan, and the National Science Foundation (grant no.
1110942 to FD). Y. X. thanks NSFC (21072060), China, Oriental
Scholarship, SRFDP (20100074110015), NCET, and the Funda-
mental Research Funds for the Central Universities (WK1013002).
N. M. S.-B. thanks the JSPS for a research fellowship.
Notes and references
1 (a) J. L. Sessler, P. A. Gale and W.-S. Cho, Anion Receptor
Chemistry, RSC Publishing, Cambridge, 2006; (b) P. D. Beer and
P. A. Gale, Angew. Chem., Int. Ed., 2001, 40, 486.
20 (a) L. Milgrom, Tetrahedron Lett., 1983, 39, 3895; (b) L. Milgrom,
J. P. Hill and P. F. Dempsey, Tetrahedron, 1994, 50, 13477.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 3951–3953 3953