4
220
R. García-Álvarez et al. / Tetrahedron Letters 52 (2011) 4218–4220
of our knowledge this is the first efficient and selective protocol de-
Girolamo, M.; Martin, F.; Gentile, M.; Santoni, A.; Corda, D.; Poli, G.; Mantovani,
A.; Ghezzi, P.; Colotta, F. Proc. Natl. Acad. Sci. 2004, 101, 11791–11796.
Nitrile 4 is a commercially available compound (ABCR GmbH & Co. KG) that can
be generated by catalytic hydrocyanation of the corresponding vinylarene: (a)
Nugent, W. A.; McKinney, R. J. J. Org. Chem. 1985, 50, 5370–5372; (b)
Casalnuovo, A. L.; RajanBabu, T. V.; Ayers, T. A.; Warren, T. H. J. Am. Chem.
Soc. 1994, 116, 9869–9882.
See, for example: (a) The Chemistry of Amides; Zabicky, J., Ed.; Wiley: New York,
1970; (b) Bailey, P. D.; Mills, T. J.; Pettecrew, R.; Price, R. A. In Comprehensive
Organic Functional Group Transformations II; Katritzky, A. R., Taylor, R. J. K., Eds.;
Elsevier: Oxford, 2005; Vol. 5, pp 201–294; (c) Methoden Org. Chem. (Houben
Weyl); Dopp, D., Dopp, H., Eds.; Thieme: Stuttgart, 1985; Vol. E5(2), pp 1024–
11,12
scribed in the literature for this transformation.
Moreover, the
7
.
.
process is truly sustainable since, in addition to its atom-economy,
it proceeds in a pure aqueous medium and is compatible with the
use of low-energy-consuming MW-irradiation as the heating
source. Further investigations into the application of complex
8
6
[
2
RuCl (g
-C
6
Me
6
){P(NMe
2
)
3
}] (8) to the catalytic hydration of
other challenging organonitriles are now in progress in our labora-
tories, and will be the subject of future contributions.
1031.
9
.
For recent reviews covering the use of enzymes in catalytic nitrile hydrations,
see: (a) Kobayashi, M.; Shimizu, S. Curr. Opin. Chem. Biol. 2000, 4, 95–102; (b)
Endo, I.; Nojori, M.; Tsujimura, M.; Nakasako, M.; Nagashima, S.; Yohda, M.;
Odaka, M. J. Inorg. Biochem. 2001, 83, 247–253; (c) Mylerová, V.; Martínková, L.
Curr. Org. Chem. 2003, 7, 1279–1295; (d) Kovacs, J. A. Chem. Rev. 2004, 104,
Acknowledgments
Financial support from the Spanish MICINN (Projects CTQ2006-
0
8485/BQU, CTQ2010-14796/BQU and CSD2007-00006) is grate-
825–848; (e) De Santis, G.; Di Cosimo, R. In Biocatalysis for the Pharmaceutical
fully acknowledged. J.F. thanks MEC of Spain and the European
Social Fund (FPU program) for the award of a Ph.D. grant.
Industry: Discovery, Development and Manufacturing; Tao, J., Lin, G.-Q., Liese, A.,
Eds.; Wiley-VCH: Weinheim, 2009; pp 153–181.
10. For reviews covering the field of metal-mediated and metal-catalyzed nitrile
hydrations, see: (a) Kukushkin, V. Y.; Pombeiro, A. J. L. Chem. Rev. 2002, 102,
Supplementary data
1
1
771–1802; (b) Kukushkin, V. Y.; Pombeiro, A. J. L. Inorg. Chim. Acta 2005, 358,
–21; (c) Ahmed, T. J.; Knapp, S. M. M.; Tyler, D. R. Coord. Chem. Rev. 2011, 255,
Supplementary data (Copies of the 31P{ H}, H and C{ H} NMR
1
1
13
1
949–974.
spectra of complex 8. Copies of the 1H and C{ H} NMR and GC/
13
1
11. The use of nitrile hydratases proved ineffective due to the preferential
formation of ibuprofen by hydrolysis of 3: (a) Beard, T.; Cohen, M. A.;
Parratt, J. S.; Turner, N. J.; Crosby, J.; Moilliet, J. Tetrahedron: Asymmetry 1993, 4,
MSD spectra of ibuprofenamide (3) isolated from entry 4 in Table
1
085–1104; (b) Effenberger, F.; Graef, B. W. J. Biotechnol. 1998, 60, 165–174; (c)
Fallon, R. D.; Stieglitz, B.; Turner, I. Appl. Microbiol. Biotechnol. 1997, 47, 156–
61; (d) Rzeznicka, K.; Schätzle, S.; Böttcher, D.; Klein, J.; Bornscheuer, U. T.
1. GC conditions employed and GC profiles of the catalytic reac-
1
Appl. Microbiol. Biotechnol. 2010, 85, 1417–1425.
1
2. Formation of ibuprofenamide by phase transfer catalyzed oxidation of 4 with
basic hydrogen peroxide has been described (up to 70% conversion with 90%
selectivity): Yadav, G. D.; Ceasar, J. L. Org. Process Res. Dev. 2008, 12, 740–747.
3. (a) Cadierno, V.; Francos, J.; Gimeno, J. Chem. Eur. J. 2008, 14, 6601–6605; (b)
Cadierno, V.; Díez, J.; Francos, J.; Gimeno, J. Chem. Eur. J. 2010, 16, 9808–9817;
References and notes
1
1
.
.
(a) Vane, J. R. Nature 1971, 231, 232–235; (b) Busson, N. J. Int. Med. Res. 1986,
4, 53–62.
See, for example: (a) Smith, W. L.; Marnett, D. L.; DeWitt, D. L. Pharmacol. Ther.
991, 49, 153–179; (b) Vane, J. R.; Bakhle, Y. S.; Botting, R. M. Annu. Rev.
1
(
2
c) García-Álvarez, R.; Díez, J.; Crochet, P.; Cadierno, V. Organometallics 2010,
9, 3955–3965; (d) García-Garrido, S. E.; Francos, J.; Cadierno, V.; Basset, J. M.;
Polshettiwar, V. ChemSusChem 2011, 4, 104–111.
2
1
Pharmacol. Toxicol. 1998, 38, 97–120; (c) Simmons, D. L.; Botting, R. M.;
Robertson, P. M.; Madsen, M. L.; Vane, J. R. Proc. Natl. Acad. Sci. 1999, 96, 3275–
6
i
1
1
4. Known compounds such as [RuCl
TPPMS, PTA, P(OMe) P(OPh)
conversion after 24 h at 100 °C).
2
(g
-C
6 6 3 3 3 3 3
Me )(PR )] (PR = PMe , PPh , P Pr ,
3
,
3
) were completely ineffective (up to 10%
3
280; (d) Narumiya, S.; Fitzgerald, G. A. J. Clin. Invest. 2001, 108, 25–30.
3
.
.
See, for example: (a) Allison, M. C.; Howatson, A. G.; Torrance, C. J.; Lee, F. D.;
Russell, R. I. N. Engl. J. Med. 1992, 327, 749–754; (b) Rainsford, K. D.; Quadir, M.
Inflammopharmacology 1995, 3, 169–190; (c) García-Rodríguez, L. A. Arch. Int.
Med. 1998, 158, 33–39; (d) Wolfe, M. M.; Lichtenstein, D. R.; Singh, G. N. Engl. J.
Med. 1999, 340, 1888–1899; (e) Rainsford, K. D. J. Physiol. (Paris) 2001, 95, 11–
6-C
5. Preparation of complex [RuCl
2
(
g
6 6 2 3
Me ){P(NMe ) }] (8): A solution of dimer
6
[
{RuCl( ] (0.130 g, 0.194 mmol) in dichloromethane (20 mL)
l-Cl)(
g
-C
6
6
Me )}
2
was treated with P(NMe ) (0.352 mL, 1.94 mmol) at room temperature for 3 h.
2 3
The solution was then evaporated to dryness and the resulting oily residue
washed with a 1:2 mixture of diethyl ether/hexane (4 Â 10 mL), thus yielding
an orange solid which was vacuum-dried. Yield: 0.133 g, 71% (Found: C, 43.33;
1
9.
4
See, for example: (a) Spickett, R. G. W.; Vega, A.; Prieto, J.; Moragues, J.;
Marquez, M.; Roberts, D. J. Eur. J. Med. Chem. 1976, 11, 7–11; (b) Muteshwar, G.;
Kohli, D. V.; Uppadhyay, R. K. Indian J. Pharm. Sci. 1990, 52, 91–93; (c)
Shanbhag, V. R.; Crider, A. M.; Gokhale, R.; Harpalani, A.; Dick, R. M. J. Pharm.
Sci. 1992, 81, 149–154; (d) Robert, J. M. H.; Robert-Piessard, S.; Duflos, M.; Le
Baut, G.; Khettab, E. N.; Grimaud, N.; Petit, J. Y.; Welin, L. Eur. J. Med. Chem.
31
1
H, 7.40; N, 8.60%. C18
H
36
N
3
Cl
3
, 162.1 MHz) d 114.9 (s) ppm. H NMR (CDCl , 400.5 MHz) d 2.68
13 1
2
PRu requires C, 43.46; H, 7.29; N, 8.45%). P{ H}
1
NMR (CDCl
3
d, 18H, 3
(
J
PH = 8.0 Hz, NMe), 1.96 (s, 18H, C
6
Me
6
) ppm. C{ H} NMR (CD
2 2
Cl ,
1
00.6 MHz) d 90.1 (s, C
6
Me ), 35.2 (br, NMe), 16.0 (s, C
6
6
6
Me ) ppm. Copies of the
spectra can be found in the Supplementary material.
6. (a) Catalytic hydration of 2-(4-isobutylphenyl)propionitrile (4) using complex
1
1
994, 29, 841–854; (e) Rajasekaran, A.; Sivakumar, P.; Jayakar, B. Indian J.
6
[
RuCl
2 6 6 2 3
(g -C Me ){P(NMe ) }] (8) under classical thermal conditions: Under
Pharm. Sci. 1999, 61, 158–161; (f) Doshi, A.; Samant, S. D.; Deshpande, S. G.
Indian J. Pharm. Sci. 2002, 64, 440–444; (g) Doshi, A.; Deshpande, S. G. Indian J.
Pharm. Sci. 2002, 64, 445–448; (h) Cocco, M. T.; Congiu, C.; Onnis, V.; Morelli,
M.; Cauli, O. Eur. J. Med. Chem. 2003, 38, 513–518; (i) Aureli, L.; Cruciani, G.;
Cesta, M. C.; Anacardio, R.; De Simone, L.; Moriconi, A. J. Med. Chem. 2005, 48,
nitrogen atmosphere, 2-(4-isobutylphenyl)propionitrile (0.187 g, 1 mmol),
6
water (3 mL), and [RuCl
2 6 6 2 3
(g -C Me ){P(NMe ) }] (24.8 mg, 0.05 mmol;
5
mol % of Ru) were introduced into a sealed tube and the reaction mixture
stirred at 100 °C for 7 h. After elimination of the solvent under reduced
pressure, the crude reaction mixture was purified by flash chromatography
over silica gel using diethyl ether as eluent to afford 0.178 g of analytically pure
ibuprofenamide (3) as a white solid (87% yield). The identity of 3 was assessed
2
469–2479; (j) Allegretti, M.; Bertini, R.; Cesta, M. C.; Bizzarri, C.; Di Bitondo,
R.; Di Cioccio, V.; Galliera, E.; Berdini, V.; Topai, A.; Zampella, G.; Russo, V.; Di
Bello, N.; Nano, G.; Nicolini, L.; Locati, M.; Fantucci, P.; Florio, S.; Colotta, F. J.
Med. Chem. 2005, 48, 4312–4331; (k) Guo, C. B.; Cai, Z. F.; Guo, Z. R.; Feng, Z. Q.;
Chu, F. M.; Cheng, G. F. Chinese Chem. Lett. 2006, 17, 325–328; (l) Allegretti, M.;
Bertini, R.; Beccari, A.; Moriconi, A.; Aramini, A.; Bizzarri, C.; Colotta, F. PCT Int.
Appl. WO2006063999, 2006.; (m) Doshi, A.; Deshpande, S. G. Indian J. Pharm.
Sci. 2007, 69, 824–827; (n) Metha, N.; Aggarwal, S.; Thareja, S.; Malla, P.; Misra,
M.; Bhardwaj, T. R.; Kumar, M. Int. J. ChemTech Res. 2010, 2, 233–238; (o)
Metha, N.; Thareja, S.; Aggarwal, S.; Malla, P.; Bhardwaj, T. R.; Kumar, M. Der
Pharma Chemica 2010, 2, 397–403.
by comparison of its 1H and C{ H} NMR spectroscopic data with those
13
1
reported in the literature and by their fragmentation in GC/MSD;
(
[
b) Catalytic hydration of 2-(4-isobutylphenyl)propionitrile (4) using complex
6
2 6 6 2 3
RuCl (g -C Me ){P(NMe ) }] (8) under MW-irradiation: Under nitrogen
atmosphere, a pressure-resistant septum-sealed glass microwave reactor vial
was charged with 2-(4-isobutylphenyl)propionitrile (0.187 g, 1 mmol), water
6
(
3 mL), [RuCl
2
(g
6
-C Me
6
){P(NMe
)
2 3
}] (12.4 mg, 0.025 mmol; 2.5 mol % of Ru)
and a magnetic stirring bar. The vial was then placed inside the cavity of a CEM
Ò
Discover S-Class microwave synthesizer and power was held at 150 W until
5
.
.
Esters are also prodrugs of ibuprofen under active investigation. See, for
example: (a) Khan, M. S. Y.; Akhter, M. Eur. J. Med. Chem. 2005, 40, 371–376; (b)
Davaran, S.; Rashidi, M. R.; Hanaee, J.; Hamidi, A. A.; Hashemi, M. Drug Delivery
the desired temperature was reached (150 °C). Microwave power was
automatically regulated for the remainder of the experiment to maintain the
temperature (monitored by a built-in infrared sensor; Pmax = 25 psi). Work-up
as described above led to 0.187 g of analytically pure ibuprofenamide (91%
yield).
2006, 13, 383–387; (c) Duan, Y.; Yu, J.; Liu, S.; Ji, M. Med. Chem. 2009, 5, 577–
582; (d) Ghosh, B.; Gb, P.; Mishra, R.; Parcha, V. Int. J. Pharm. Pharm. Sci. 2010, 2,
79–85.
1
7. For reviews and a recent book on this topic, see: (a) Dallinger, D.; Kappe, O. C.
Chem. Rev. 2007, 107, 2563–2591; (b) Polshettiwar, V.; Varma, R. S. Chem. Soc.
Rev. 2008, 37, 1546–1557; (c) Polshettiwar, V.; Varma, R. S. Acc. Chem. Res.
6
(a) Bertini, R.; Bizzarri, C.; Sabbatini, V.; Porzio, S.; Caselli, G.; Allegretti, M.;
Cesta, M. C.; Gandolfi, C. A.; Mantovanini, M.; Colotta, F. PCT Int. Appl.
WO2000024710, 2000.; (b) Bertini, R.; Allegretti, M.; Bizzarri, C.; Moriconi, A.;
Locati, M.; Zampella, G.; Cervellera, M. N.; Di Cioccio, V.; Cesta, M. C.; Galliera,
E.; Martinez, F. O.; Di Bitondo, R.; Troiani, G.; Sabbatini, V.; D’Anniballe, G.;
Anacardio, R.; Cutrin, J. C.; Cavalieri, B.; Mainiero, F.; Strippoli, R.; Villa, P.; Di
2008, 41, 629–639; (d) Aqueous Microwave Assisted Chemistry; Polshettiwar, V.,
Varma, R. S., Eds.; RSC Publishing: Cambridge, 2010.