reported results focused on the development of copper-free
catalyst systems for aryl bromides and aryl iodides.3 The
examples of the efficient palladium catalyst systems for Sono-
gashira coupling of aryl chlorides are still few.4 The efficient
copper-free palladium catalyst system for Sonogashira coupling
of electron-rich, electron-neutral, and electron-poor aryl chlo-
rides was reported by Buchwald and co-workers with P(Cy)2Ar
as ligand.4b,f Other catalyst systems showed moderate or high
catalytic activity either in the use of activated aryl chlorides4e
Efficient Copper-Free PdCl2(PCy3)2-Catalyzed
Sonogashira Coupling of Aryl Chlorides with
Terminal Alkynes
Chenyi Yi and Ruimao Hua*
Department of Chemistry, Tsinghua UniVersity, InnoVatiVe
Catalysis Program, Key Laboratory of Organic Optoelectronics
& Molecular Engineering of Ministry of Education,
Beijing 100084, China
4a
or requiring CuI4c,d or ZnCl2 as cocatalyst. Therefore, the
purpose of our research work is to develop an effective, copper-
free, easily available palladium catalyst for Sonogashira coupling
of a wide variety of aryl chlorides. In this Note, we wish to
report our preliminary results.
ReceiVed December 6, 2005
We chose the cross-coupling of chlorobenzene (1a) with
phenyl acetylene as the model reaction to screen the catalyst
and optimize the reaction conditions. First, the catalytic activities
of some catalysts such as NiCl2(dppp), PdCl2(PPh3)2, PdCl2-
(PPhMe2)2, and PdCl2(PCy3)2 were tested in the presence of
Cs2CO3 at 120 °C in NMP (NMP ) N-methylpyrrolidone). As
shown in Table 1, NiCl2(dppp) and PdCl2(PPh3)2 showed no
catalytic activity at all and the starting materials were recovered
completely (entries 1 and 2), while PdCl2(PPhMe2)2 displayed
low catalytic activity to give 2a in 25% GC yield (entry 3).
Fortunately, PdCl2(PCy3)2, which has more basic and bulky
groups of PCy3, showed moderate catalytic activity (entry 4).
These results encouraged us to further optimize the reaction
conditions in the presence of PdCl2(PCy3)2 by using different
bases and solvents, as well as changing the reaction temperature.
As can be seen from Table 1, among the bases tested, Cs2CO3
was the best chosen. In addition, the use of p-xylene, 1,4-
dioxane, or DMF to replace NMP as solvent resulted in
decreasing the catalytic activity of PdCl2(PCy3)2 (entries 8-10).
However, in the case of DMSO used as solvent, even at a
relative low temperature (100 °C), PdCl2(PCy3)2 also showed
some catalytic activity, and at 120 °C, 2a could be obtained in
60% GC yield (entries 11 and 12). More importantly, increase
Under copper-free conditions and with Cs2CO3 as a base,
PdCl2(PCy3)2 showed high catalytic activity for cross-
coupling of electron-rich, electron-neutral, and electron-
deficient aryl chlorides with a variety of terminal alkynes in
DMSO at 100-120 °C affording internal arylated alkynes
in good to excellent yields.
Palladium/copper-catalyzed Sonogashira cross-coupling of
terminal alkynes with aryl halides has become a powerful
method for constructing carbon-carbon bonds leading to the
formation of internal arylated alkynes (eq 1).1 A number of
(3) Recent reports on copper-free Sonogashira reactions: (a) Bohm, V.
P. M.; Herrmann, W. A. Eur. J. Org. Chem. 2000, 6, 3679-3681. (b)
Fukuyama, T.; Shinmen, M.; Nishitani, S.; Sato, M.; Ryu, I. Org. Lett.
2002, 4, 1691-1694. (c) Alonso, D. A.; Najera, C.; Pacheco, M. C.
Tetrahedron Lett. 2002, 43, 9365-9368. (d) Leadbeater, N. E.; Tominack,
B. J. Tetrahedron Lett. 2003, 44, 8653-8656. (e) Soheili, A.; Albaneze-
Walker, J.; Murry, J. A.; Dormer, P. G.; Hughes, D. L. Org. Lett. 2003, 5,
4191-4194. (f) Mery, D.; Heuze, K.; Astruc, D. Chem. Commun. 2003,
1934-1935. (g) Heuze, K.; Mery, D.; Gause, D.; Astruc, D. Chem.
Commun. 2003, 2274-2275. (h) Park, S. B.; Alper, H. Chem. Commun.
2004, 1306-1307. (i) Park, S.; Kim, M.; Koo, D. H.; Chang, S. AdV. Synth.
Catal. 2004, 346, 1638-1640. (j) Urganonkar, S.; Verkade, J. G. J. Org.
Chem. 2004, 69, 5752-5755. (k) Cheng, J.; Sun, Y.; Wang, F.; Guo, M.;
Xu, J.-H.; Pan, Y.; Zhang, Z. J. Org. Chem. 2004, 69, 5428-5430. (l)
Arques, A.; Aunon, D.; Molina, P. Tetrahedron Lett. 2004, 45, 4337-4340.
(m) Djakovitch, L.; Rollet, P. Tetrahedron Lett. 2004, 45, 1367-1370. (n)
Djakovitch, L.; Rollet, P. AdV. Synth. Catal. 2004, 346, 1782-1792. (o)
Heuze, K.; Mery, D.; Gauss, D.; Blais, J. C.; Astruc, D. Eur. J. Chem.
2004, 10, 3936-3944. (p) Tyrrell, E.; Al-Saardi, A.; Millet, J. Synlett 2005,
487-488. (q) Liang, B.; Dai, M.; Chen, J.; Yang, Z. J. Org. Chem. 2005,
70, 391-393.
efficient catalyst systems have been developed for coupling of
aryl bromides or aryl iodides.2,3 In recent years, although the
Sonogashira reaction has been intensively investigated to extend
the application generality and simplify the catalyst systems, the
(1) Reviews, see: (a) Sonogashira, K. J. Organomet. Chem. 2002, 653,
46-49. (b) Negishi, E.; Anastasia, L. Chem. ReV. 2003, 103, 1979-2017.
(c) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005,
44, 4442-4489.
(2) Recent publications: (a) Elangovan, A.; Wang, Y.-H.; Ho, T.-I. Org.
Lett. 2003, 5, 1841-1844. (b) Datta, A.; Plenio, H. Chem. Commun. 2003,
1504-1505. (c) Hillerich, J.; Plenio, H. Chem. Commun. 2003, 3024-
3025. (d) Mas-Marza, E.; Segarra, A. M.; Claver, G.; Peris, E.; Fernandez,
E. Tetrahedron Lett. 2003, 44, 6595-6599. (e) Garcia, D.; Cuadro, A. M.;
Alvarez-Builla, J.; Vaquero, J. J. Org. Lett. 2004, 6, 4175-4178. (f) Wolf,
C.; Lerebours, R. Org. Biomol. Chem. 2004, 2, 2161-2164. (g) DeVasher,
R. B.; Moore, L. R.; Shaughnessy, K. H. J. Org. Chem. 2004, 69, 7919-
7927. (h) Bhattacharya, S.; Sengupta, S. Tetrahedron Lett. 2004, 45, 8733-
8736. (i) Feuerstein, M.; Doucet, H.; Santelli Tetrahedron Lett. 2005, 46,
1717-1720. (j) Kollhofer, A.; Plenio, H. AdV. Synth. Catal. 2005, 347,
1295-1300.
(4) (a) Eberhard. M. R.; Wang, Z.; Jensen, C. M. Chem. Commun. 2002,
818-819. (b) Gelman, D.; Buchwald, S. L. Angew. Chem., Int. Ed. 2003,
42, 5993-5996. (c) Kollhofer, A.; Pullmann, T.; Plenio, H. Angew. Chem.,
Int. Ed. 2003, 42, 1056-1058. (d) Novak, Z.; Szabo, A.; Repasi, J.; Kotschy,
A. J. Org. Chem. 2003, 68, 3327-3329. (e) Feuerstein, M.; Doucet, H.;
Santelli, M. Tetrahedron Lett. 2004, 45, 8443-8446. (f) Anderson, K. W.;
Buchwald, S. L. Angew. Chem., Int. Ed. 2005, 44, 6173-6177.
10.1021/jo0525175 CCC: $33.50 © 2006 American Chemical Society
Published on Web 02/15/2006
J. Org. Chem. 2006, 71, 2535-2537
2535