T.Y.H. Wong et al.rJournal of Molecular Catalysis A: Chemical 139 (1999) 159–169
169
to CDHX2
XsCl andror I , which could be formed by reaction of H-atoms with CDCl to give
Ž .
3
initially HCl and CDCl P radicals, with these then reacting with H- or I-atoms to give CDHCl or
2
2
CDCl I, respectively
Ž
note that I-atoms do not react with CHCl w24x
.
. Use of g-alumina gave no
2
3
formation of this type of species, but in hydrogenation studies using cis-cyclooctene, cyclooctane was
formed in up to ;5% yield based on 15% photodecomposition of HI.
5
. Conclusions
Concerning potential catalytic cycles for the conversion of H S to H and elemental sulfur, we
2
2
have shown that the dinuclear bridged-sulfide species Pd X2
Ž
m-S.Ždpm.2 can be formed from the
2
reaction of H S with PdX2Ždpm
liberated HX
.
on alumina, the reaction being induced by chemisorption of the
2
Ž .
Xshalide . The reaction involves activation of the H S on the alumina, and a
plausible mechanism via mercapto intermediates is presented. For the iodide system, photodecomposi-
tion of the absorbed HI can generate I , but not very efficiently, and H is not produced; there is
2
2
2
some evidence for formation of H-atoms, but not to the quantitative amount based on the I formed.
2
References
w1x T.Y.H. Wong, A.F. Barnabas, D. Sallin, B.R. James, Inorg. Chem. 34 Ž1995. 2278.
w2x A.F. Barnabas, D. Sallin, B.R. James, Can. J. Chem. 67 Ž1989. 2009.
w3x G. Besenyei, C.-L. Lee, J. Gulinski, B.R. James, D.A. Nelson, M.A. Lilga, Inorg. Chem. 26 Ž1987. 3622.
w4x B.R. James, Pure Appl. Chem. 69 Ž1997. 2213.
w5x W.Z. Weng, D. Sallin, B.R. James, to be published.
w6x T.Y.H. Wong, PhD Dissertation, University of British Columbia, Vancouver, 1996.
w7x T.Y.H. Wong, S.J. Rettig, B.R. James, to be published.
w8x C.T. Hunt, A.L. Balch, Inorg. Chem. 20 Ž1981. 2267.
w9x J.M. Jenkins, J.G. Verkade, Inorg. Synth. 11 Ž1868. 108.
w10x W.L. Steffen, G. Palenik, Inorg. Chem. 15 Ž1976. 2432.
w11x C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, in: G.E. Muilenberg ŽEd.., Handbook of X-ray Photoelectron Spectroscopy,
Perkin-Elmer, Physical Electronics Div., Eden Prairie, MN, 1979, p. 43.
w12x C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, in: G.E. Muilenberg ŽEd.., Handbook of X-ray Photoelectron Spectroscopy,
Perkin-Elmer, Physical Electronics Div., Eden Prairie, MN, 1979, p. 100.
w13x C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, in: G.E. Muilenberg ŽEd.., Handbook of X-ray Photoelectron Spectroscopy,
Perkin-Elmer, Physical Electronics Div., Eden Prairie, MN, 1979, p. 58.
w14x C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, in: G.E. Muilenberg ŽEd.., Handbook of X-ray Photoelectron Spectroscopy,
Perkin-Elmer, Physical Electronics Div., Eden Prairie, MN, 1979, p. 56.
w15x J.R. West, in: M. Grayson ŽEd.., Sulfur Recovery, Kirk-Othmer Encyclopedia of Chemical Technology, 3rd edn., Vol. 22, Wiley,
Toronto, 1983, p. 267.
w16x F. Bandermann, K.B. Harder, Int. J. Hydrogen Energy 10 Ž1985. 21.
w17x H. Knozinger, P. Ratnasamy, Catal. Rev.-Sci. Eng. 17 Ž1978. 31.
w18x L.R. Snyder, Principles of Adsorption Chromatography, Chap. 7, Marcel Dekker, New York, 1968.
w19x J.B. Peri, J. Phys. Chem. 69 Ž1965. 220.
w20x J.B. Peri, J. Phys. Chem. 69 Ž1965. 211.
w21x R.K. Oberlander, in: B.E. Leach ŽEd.., Applied Industrial Catalysis, Chap. 4, Vol. 3, Academic Press, Toronto, 1984.
w22x P.G. Jessop, C.-L. Lee, G. Rastar, B.R. James, C.J.L. Lock, R. Faggiani, Inorg. Chem. 31 Ž1992. 4601.
w23x M.C. Jennings, N.C. Payne, R.J. Puddephatt, J. Chem. Soc., Chem. Commun., Ž1986. 1809.
w24x A. Streitwieser Jr., C.H. Heathcock, Introduction to Organic Chemistry, 3rd edn., Chap. 6, Macmillan, New York, 1985.