Mendeleev Commun., 2019, 29, 155–157
(
a)
+
References
Ag (1 equiv.)
2
2
1
1
0
0
.5
.0
.5
.0
.5
.0
2
+
1 (a) C. Chen, H. Liu, B. Zhang, Y. Wang, K. Cai, Y. Tan, C. Gao, H. Liu,
C. Tan andY. Jiang, Tetrahedron, 2016, 72, 3980; (b) S.Y. Lee, K. H. Bok
and C. Kim, RSC Adv., 2017, 7, 290.
Free ligand, 1 equiv. of Hg ,
2
+
2+
2+
2+
Cu , Ca , Mg , Zn ,
2
+
2+
2+
2+
Ni , Fe , Pb , Cd
2
(a) K. Velmurugan, A. Thamilselvan, R. Antony, V. R. Kannan, L. Tang
and R. Nandhakumar, J. Photochem. Photobiol., A, 2017, 333, 130;
(
b) A. Affrose, S. D. S. Parveen, B. S. Kumar and K. Pitchumani, Sens.
Actuators, B, 2015, 206, 170.
3
4
Q. L. Feng, J. Wu, G. Q. Chen, T. N. Kim and J. O. Kim, J. Biomed.
Mater. Res., 2000, 52, 662.
(a) M. Formica, V. Fusi, L. Giorgi and M. Micheloni, Coord. Chem. Rev.,
4
00
450
500
550
600
650
l/nm
2
012, 256, 170; (b) M. H. Lee, J. S. Kim and J. L. Sessler, Chem. Soc.
(
b)
8
7
7
6
6
5
5
0
1 equiv. of metal ion
5
Rev., 2015, 44, 4185; (c) S. A. Gorbatov, M. A. Kozlov, I. E. Zlobin,
A. V. Kartashov, I. V. Zavarzin andYu. A. Volkova, Mendeleev Commun.,
2018, 28, 615.
5 P. A. Panchenko, O. A. Fedorova and Yu. V. Fedorov, Russ. Chem. Rev.,
2014, 83, 155.
+
equiv. of competing ion + 1 equiv. of Ag
5
0
5
0
5
0
6
(a) A. D. Arulraj, R. Devasenathipathy, S.M. Chen, V. S. Vasantha and
S.F. Wang, Sens. Biosens. Res., 2015, 6, 19; (b) T. Chen, W. Zhu,Y. Xu,
S. Zhang, X. Zhang and X. Qian, Dalton Trans., 2010, 39, 1316.
4
2
0
7 C. S. Park, J. Y. Lee, E.J. Kang, J.E. Lee and S. S. Lee, Tetrahedron
Lett., 2009, 50, 671.
Ag+ Hg2+ Cu2+ Ca2+ Mg2+ Zn2+ Ni2+ Fe2+ Pb2+ Cd2+
8 (a) P. A. Panchenko, Y. V. Fedorov, V. P. Perevalov, G. Jonusauskas and
O. A. Fedorova, J. Phys. Chem. A, 2010, 114, 4118; (b) P. A. Panchenko,
Y. V. Fedorov, O. A. Fedorova, B. A. Izmailov, V. A. Vasnev, V. V. Istratov,
E. A. Makeeva, M. N. Rumyantseva and A. M. Gaskov, Mendeleev
Commun., 2011, 21, 12; (c) A. N. Sergeeva, P. A. Panchenko, Yu. V.
Fedorov and O. A. Fedorova, Prot. Met. Phys. Chem. Surf., 2012, 48,
Figure 2 (a) Fluorescence spectra of compound 9 (5 mm) upon addition
of Ag , Hg , Fe , Cu , Zn , Pb , Cd , Ni , Ca , and Mg (1 equiv.)
in water at pH 7.3 (10 mm HEPES buffer); (b) selectivity of 9 for Ag .
Excitation wavelength was 375 nm.
+
2+
2+
2+
2+
2+
2+
2+
2+
2+
+
5
24 (Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2012, 48, 440);
(
[
1 equiv.). The competition experiments were also conducted
Figure 2(b)]. In a typical procedure, the emission spectrum was
(
d) P. A. Panchenko, Y. V. Fedorov, O. A. Fedorova and G. Jonusauskas,
Dyes Pigm., 2013, 98, 347; (e) P. A. Panchenko, V. V. Park, O. A.
Fedorova, Yu. V. Fedorov and E. A. Kataev, Russ. Chem. Bull., Int. Ed.,
2015, 64, 1871 (Izv. Akad. Nauk, Ser. Khim., 2015, 1871); (f) P. A.
Panchenko, Y. V. Fedorov, O. A. Fedorova and G. Jonusauskas, Phys.
Chem. Chem. Phys., 2015, 17, 22749.
(a) S. L. Selektor, L. B. Bogdanova, A. V. Shokurov, P. A. Panchenko,
O.A. Fedorova andV.V.Arslanov, Makrogeterotsikly/ Macroheterocycles,
2014, 7, 311; (b) R. C. Elderfield, I. S. Covey, J. B. Geiduschek, W. L.
Meyer, A. B. Ross and J. H. Ross, J. Org. Chem., 1958, 23, 1749;
(c) A. B. Descalzo, R. MartínezMáñez, R. Radeglia, K. Rurack and
J. Soto, J. Am. Chem. Soc., 2003, 125, 3418; (d) D. Jiménez, R. Martínez
Máñez, F. Sancenón, J. V. RosLis, J. Soto, Á. Benito and E. García
Breijo, Eur. J. Inorg. Chem., 2005, 2393; (e) M. Tian and H. Ihmels,
Eur. J. Org. Chem., 2011, 4145.
measured before and after the addition of other ions (5 equiv.) to
the solution of 9 (5 mm) containing Ag (1 equiv.). As one can
see, the presence of Cu , Ca , Pb , Mg , Zn , Ni , or Cd
+
2+
2+
2+
2+
2+
2+
2+
did not cause any pronounced signal interference, while there
9
was a small effect in the cases of Hg2 and Fe . Noteworthy,
such a low response of sensor 9 to mercury(ii) cations was first
seemed quite surprising, since azadithia15crown5 ether is the
+
2+
2+ 16
known ionophore for Hg . The analysis of conditions under
which this receptor was capable to bind Hg effectively has
shown that mostly pure organic solvents (acetonitrile,
chloroform,
the similar high selectivity to Ag over Hg was observed in
aqueous 50 vol% ethanol at pH 7.2. This is consistent with the
fact that mercury(ii) ion is completely hydrolyzed at neutral
pH and exists in the form of Hg(OH) , while Ag is much less
2+
1
6(a),(b)
1
6(c)
16(d)
or THF
) were used as the media. However,
+
2+
10 A. Pardo, J. M. L. Poyato, E. Martin, J. J. Camacho, D. Reyman, M. F.
Braña and J. M. Castellano, J. Photochem. Photobiol., A, 1989, 46, 323.
11 P. A. Panchenko, Yu. V. Fedorov, O. A. Fedorova, V. P. Perevalov and
G. Jonusauskas, Russ. Chem. Bull., Int. Ed., 2009, 58, 1233 (Izv. Akad.
Nauk, Ser. Khim., 2009, 1199).
2 (a) Z. Szakács, S. Rousseva, M. Bojtár, D. Hessz, I. Bitter, M. Kállay,
M. Hilbers, H. Zhang and M. Kubinyi, Phys. Chem. Chem. Phys., 2018,
20, 10155; (b) P. A. Panchenko, A. N. Arkhipova, O. A. Fedorova,
Y. V. Fedorov, M. A. Zakharko, D. E. Arkhipov and G. Jonusauskas,
Phys. Chem. Chem. Phys., 2017, 19, 1244; (c) A. N. Arkhipova, P. A.
Panchenko, Yu. V. Fedorov and O. A. Fedorova, Mendeleev Commun.,
6(b)
17
+
2
1
6(e)
subjected to the hydrolysis. In our recent work,
reported that the fluorescence response of sensor molecule
bearing the same azadithia15crown5 receptor and 4amino
we also
1
2
+
1
,8naphthalimide chromophore to Hg in acidic methanol–
water solution (pH 4.7) or in acetonitrile was fairly high.
In summary, the novel crowncontaining 4methoxy1,8naph
thalimide derivative 9 has been synthesized and evaluated with
respect to its ability to serve as the fluorescent PET chemosensor
for silver(i) ion. The fluorescence intensity of compound 9 is
enhanced in the presence of Ag due to the formation of highly
emissive complex 9·Ag , where the PET process is hampered.
A good selectivity of the new sensor for the quantification of
silver(i) content in purely aqueous solutions at the micromolar
level has been demonstrated.
2
017, 27, 53.
3 (a) E. Martin, R. Weigand and A. Pardo, J. Lumin., 1996, 68, 157;
b) G. J.F. Demets, E. R. Triboni, E. B. Alvarez, G. M. Arantes, P. B.
Filho and M. J. Politi, Spectrochim. Acta, Part A, 2006, 63, 220.
1
(
+
14 H.P. Loock and P. D. Wentzell, Sens. Actuators, B, 2012, 173, 157.
15 K. S. Park, J. Y. Lee and H. G. Park, Chem. Commun., 2012, 48, 4549.
6 (a) T. Ábalos, D. Jiménez, R. MartínezMáñez, J. V. RosLis, S. Royo,
F. Sancenón, J. Soto, A. M. Costero, S. Gil and M. Parra, Tetrahedron
Lett., 2009, 50, 3885; (b) E. Chernikova, D. Berdnikova, Y. Fedorov,
O. Fedorova, A. Peregudov and L. Isaacs, Chem. Commun., 2012, 48,
+
1
7
256; (c) C. H. Jeon, J. Lee, S. J. Ahn and T. H. Ha, Tetrahedron Lett.,
The work was supported by the Russian Science Foundation
project no. 187300118). The authors are grateful to the Center
of Collective Facilities at the A. N. Nesmeyanov Institute of
Organoelement Compounds of the Russian Academy of Sciences.
2013, 54, 6841; (d) S. Atilgan, I. Kutuk and T. Ozdemir, Tetrahedron
Lett., 2010, 51, 892; (e) P. A. Panchenko, Y. V. Fedorov and O. A.
Fedorova, J. Photochem. Photobiol., A, 2018, 364, 124.
(
1
7 A. Walcarius, M. Etienne and C. Delacote, Anal. Chim. Acta, 2004,
5
08, 87.
Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi: 10.1016/j.mencom.2019.03.012.
Received: 17th September 2018; Com. 18/5691
–
157 –