February 2006
MgTiO3–CaTiO3 Layered Microwave Dielectric Resonators
561
microwave dielectric characteristics, and it is a useful tool for
analyzing the layered dielectric resonators and designing tem-
perature-stable-layered dielectric resonators. Temperature-sta-
ble dielectric resonators with high-Q ꢀ f values are expected to
be attained through this new method, and the details should be
investigated further in the future work.
(a)
14000
13500
13000
12500
12000
11500
MgTiO /CaTiO
CaTiO /MgTiO
MgTiO /CaTiO /MgTiO
CaTiO /MgTiO /CaTiO
References
1W. Wersing, ‘‘Microwave Ceramics for Resonators and Filters,’’ Curr. Opin.
Solid State Mater. Sci., 1 [5] 715–31 (1996).
2M. Reaney, P. Wise, R. Ubic, J. Breeze, N. MCN. Alford, D. Iddles, D.
Cannell, and T. Price, ‘‘On the Temperature Coefficient of Resonant Frequency in
Microwave Dielectrics,’’ Philos. Mag., A81 [2] 501–10 (2001).
3J. Kato, H. Kagata, and K. Nishimoto, ‘‘Dielectric Properties of Lead Alka-
line-Earth Zirconate at Microwave Frequencies,’’ Jpn. J. Appl. Phys., 30 [9B]
2343–6 (1991).
0.25
0.50
0.75
1.00
4X. M. Chen and Y. Li, ‘‘A- and B-Site Co-Substituted Ba6ꢁ3xSm812xTi18O54
Microwave Dielectric Ceramics,’’ J. Am. Ceram. Soc., 85 [3] 579–84 (2002).
5E. S. Kim and K. H. Yoon, ‘‘Microwave Dielectric Properties of (1ꢁx)
CaTiO3–xLi1/2Sm1/2TiO3 Ceramics,’’ J. Eur. Ceram. Soc., 23 [14] 2397–401 (2003).
6W. A. Lan, M. H. Liang, C. T. Hu, K. S. Liu, and I. N. Lin, ‘‘Influence
of Zr-Doping on the Microstructure and Microwave Dielectric Properties of
Ba(Mg1/3Ta2/3)O3 Materials,’’ J. Mater. Chem. Phys., 79 [2–3] 266–9 (2003).
7S. K. Lim, H. Y. Lee, J. C. Kim, and C. An, ‘‘The Design of a Temperature-
Stable Stepped-Impedance Resonator Using Composite Ceramic Materials,’’
IEEE Microwave Guided Wave Lett., 9 [4] 143–4 (1999).
Thickness fraction of CaTiO3
(b)
90000
70000
50000
30000
10000
MgTiO /CaTiO
CaTiO /MgTiO
MgTiO /CaTiO /MgTiO
CaTiO /MgTiO /CaTiO
8V. M. Ferreira, F. Azough, and R. Freer, ‘‘The Effect of Cr and La on MgTiO3
and MgTiO3–CaTiO3 Microwave Dielectric Ceramics,’’ J. Mater. Res., 12 [12]
3293–9 (1997).
9S. G. Santiago, R. T. Wang, and G. J. Dick, ‘‘Improved Performance of a
Temperature-Compensated LN2-Cooled Sapphire Oscillator,’’ pp. 397–400 in the
49th Proceedings of the IEEE International Frequency Control Symposium, 31
May–2 June 1995.
10M. E. Tobar, J. Krupka, J. G. Hartnett, E. N. Ivanov, and R. A. Woode,
‘‘High-Q Sapphire-Rutile Frequency–Temperature Compensated Microwave Di-
electric Resonators,’’ IEEE Trans. Ultrason. Ferroelectr. Freq. Cont., 45 [3] 830–6
(1998).
0.00
0.05
0.10
0.15
0.20
0.25
11C. Tsironis and V. Pauker, ‘‘Temperature Stabilization of GaAs MESFET
Oscillators Using Dielectric Resonators,’’ IEEE Trans. Microwave Theory Tech.,
31 [3] 312–4 (1983).
Thickness fraction of CaTiO3
Fig. 8. Q ꢀ f value as a function of thickness fraction of CaTiO3 (lines,
12J. Breeze, S. J. Penn, M. Poole, and N. McN. Alford, ‘‘Layered Al2O3–TiO2
Composite Dielectric Resonators,’’ Elect. Lett., 36 [10] 883–5 (2000).
13N. McN. Alford, J. Breeze, S. J. Penn, and M. Poole, ‘‘Layered Al2O3–TiO2
Composite Dielectric Resonators with Tunable Temperature Coefficient for
Microwave Applications,’’ IEE Proc. Sci. Meas. Tech., 147 [6] 269–73 (2000).
14M. T. Sebastian, I. N. Jawahar, and P. Mohanan, ‘‘A Novel Method of Tun-
ing the Properties of Microwave Dielectric Resonators,’’ Mater. Sci. Eng., B97 [3]
258–64 (2003).
predicted; dots, experimental).
Table II. Predicted Temperature-Stable Layered MgTiO3–
CaTiO3 Resonators with Different Stacking Schemes
Thickness
fraction of
CaTiO3
f0
Q ꢀ f
15D. Kajfez, ‘‘Linear Fractional Curve Fitting for Measurement of High-Q
Factors,’’ IEEE Trans. Microwave Theory Tech., 42 [7] 1149–53 (1994).
16P. S. Kooi, M. S. Leong, and A. L. S. Prakash, ‘‘Finite-Element Analysis of
the Shielded Cylindrical Dielectric Resonator,’’ IEE Proc. H Microwave Opt.
Antennas, 132 [1] 7–16 (1985).
Stacking scheme
(GHz)
er,eff
(GHz) tf (ppm/1C)
MgTiO3/CaTiO3 0.0085 6.9135 18.03 66,850
CaTiO3/MgTiO3 0.0090 6.9149 18.02 66,870
MgTiO3/CaTiO3/ 0.0047 6.8978 18.12 66,880
MgTiO3
CaTiO3/MgTiO3/ 0.0103 6.9019 18.10 66,860
CaTiO3
0
0
0
17Y. G. Zeng, G. H. Xu, and G. X. Song, Electromagnetic Field Finite Element
Method. Science Press, Beijing, 1982 (in Chinese).
18D. Kajfez, ‘‘Incremental Frequency Rule for Computing the Q-Factor of a
Shielded TE0mp Dielectric Resonator,’’ IEEE Trans. Microwave Theory Tech., 32
[8] 941–3 (1984).
0
19X. C. Fan, X. M. Chen, and X. Q. Liu, ‘‘Complex Permittivity Measurement
on High-Q Materials Via Combined Numerical Approaches,’’ IEEE Trans.
Microwave Theory Tech., in press.
Although the as-prepared layered dielectric resonators may
have high Q ꢀ f and near-zero temperature coefficient of reso-
nant frequency, they are hard to handle for practical applica-
tions as the different layers are separate. To resolve this
problem, adhesive with low dielectric loss should be used to
bond the different layers. Surely, the adhesive will have an effect
on the microwave dielectric characteristics of the layered reso-
nators, and this effect will be investigated in further work.
20J. Liao and M. Senna, ‘‘Crystallization of Titania and Magnesium Titanate
from Mechanically Activated Mg(OH)2 and TiO2 Gel Mixture,’’ Mater. Res. Bull.,
30 [4] 385–92 (1995).
21C. L. Huang and M. H. Weng, ‘‘Improved High-Q Value of MgTiO3–CaTiO3
Microwave Dielectric Ceramics at Low-Sintering Temperature,’’ Mater. Res. Bull.,
36 [15] 2741–50 (2001).
22D. Kajefz, ‘‘Random and Systematic Uncertainties of Reflection-Type Q-Fac-
tor Measurement with Network Analyzer,’’ IEEE Trans. Microwave Theory Tech.,
51 [2] 512–9 (2003).
23A. Podcemeni, L. F. M. Conrado, and M. M. Mosso, ‘‘Upload Quality Factor
Measurement for Mic Dielectric Resonator Applications,’’ Elect. Lett., 17 [18]
656–7 (1981).
24K. Wakino, ‘‘Recent Development of Dielectric Resonator Materials and Fil-
ters in Japan,’’ Ferroelectrics, 91, 69–86 (1989).
V. Conclusion
The microwave dielectric characteristics for the layered
MgTiO3–CaTiO3 resonators with TE01d mode are discussed in
detail. The stacking scheme has a significant effect on the electric
field distribution as well as the thickness fraction of CaTiO3. The
finite-element method can give accurate predictions for the
25H. Tamura and M. Katsube, ‘‘Dielectric Ceramic Compositions Based on
Magnesium, Calcium and Rare Earth Metal Titanates,’’ U.S. Patent 4,242,213,
1980.
26C. L. Huang, C. L. Pan, and J. F. Hsu, ‘‘Dielectric Properties of
(1ꢁx)(Mg0.95Co0.05)TiO3–xCaTiO3 Ceramic System at Microwave Frequency,’’
Mater. Res. Bull., 37 [15] 2483–90 (2002).
&