A380
Journal of The Electrochemical Society, 151 ͑3͒ A374-A380 ͑2004͒
Conclusions
The structural and electrochemical properties of the
5. H. Oesterreicher and H. Bittner, J. Less-Common Met., 73, 339 ͑1980͒.
6
. K. Kadir, N. Kuriyama, T. Sakai, I. Uehara, and L. Eriksson, J. Alloys Compd., 284,
145 ͑1999͒.
La0.7Mg0.3Ni2.975ϪxCo0.525Mn (x ϭ 0.0, 0.1, 0.2, 0.3, 0.4, 0.5) hy-
drogen storage alloys have been studied. All alloys mainly consisted
7. K. Kadir, T. Sakai, and I. Uehara, J. Alloys Compd., 302, 112 ͑2000͒.
x
8
. J. Chen, N. Kuriyama, H. T. Takeshita, H. Tanaka, T. Sakai, and M. Haruta, Elec-
trochem. Solid-State Lett., 3, 249 ͑2000͒.
of the (La, Mg͒Ni phase and the LaNi phase. The relative content
3
5
9. H. G. Pan, Y. F. Liu, M. X. Gao, Y. F. Zhu, Y. Q. Lei, and Q. D. Wang, Int. J.
Hydrogen Energy, 28, 113 ͑2003͒.
of the (La, Mg͒Ni phase and that of the LaNi phase varied with x.
3
5
1
0. T. Kohno, H. Yoshida, F. Kawashima, T. Inaba, I. Sakai, M. Yamamoto, and M.
Kanda, J. Alloys Compd., 311, L5 ͑2000͒.
Meanwhile, the lattice parameters and cell volumes of both the
(
La, Mg͒Ni phase and the LaNi phase all increased with increas-
3
5
11. R. Baddour-Hadjean, J. P. Pereira-Ramos, M. Latroche, and A. Percheron-Guegan,
ing Mn content. The P-C isotherms indicate that the hydrogen stor-
age capacity first remained almost unchanged and then decreased
with increasing x from 0.0 to 0.5, and the equilibrium pressure de-
creased with increasing x continuously. The electrochemical mea-
surements show that the maximum discharge capacity first remained
unchanged and then decreased. Moreover, the HRD, the exchange
current density I , the limiting current density I , and the D of the
alloy electrodes all increased first and then decreased with increas-
ing x, which is attributed to the dissolution of Mn into electrolyte
leading to the increase of Ni content on the alloy surface. Therefore,
J. Alloys Compd., 330-332, 782 ͑2002͒.
12. H. G. Pan, Y. F. Liu, M. X. Gao, Y. Q. Lei, and Q. D. Wang, J. Electrochem. Soc.,
150, A565 ͑2003͒.
1
3. Y. F. Liu, Q. W. Jin, M. X. Gao, Y. F. Zhu, and H. G. Pan, Rare Met. Mater. Eng.,
2, 942 ͑2003͒.
3
1
4. C. Lartigue, A. Percheron-Guegan, and J. C. Achard, J. Less-Common Met., 75, 23
͑1980͒.
15. J. J. Reilly, G. D. Adzic, J. R. Johnson, T. Vogt, S. Mukerjee, and J. McBreen, J.
Alloys Compd., 293-295, 569 ͑1999͒.
0
L
1
6. T. Sakai, K. Oguro, H. Miyamura, A. Kato, and H. Ishikawa, J. Less-Common Met.,
61, 193 ͑1990͒.
7. F. Meli, A. Zuettel, and L. Schlabach, J. Alloys Compd., 202, 81 ͑1993͒.
1
1
the kinetics of hydriding of the La0.7Mg0.3Ni2.975ϪxCo0.525Mn hy-
drogen storage alloys was affected by changing x, with the optimum
composition around x ϭ 0.1.
18. J. K. Chang, D. S. Shong, and W. T. Tsai, J. Power Sources, 103, 280 ͑2002͒.
x
1
2
2
9. A. Percheron-Guegan, C. Lartigue, and J. C. Achard, J. Less-Common Met., 109,
87 ͑1985͒.
0. J. Kleperis, G. Wojicik, A. Czerwinski, J. Skowronski, M. Kopczyk, and M.
Beltowska-Brzezinska, J. Solid State Electrochem., 5, 229 ͑2001͒.
1. F. Izumi, in The Rietveld Method, R. A. Young, Editor, Oxford University Press,
Oxford ͑1993͒.
2
Acknowledgment
This work was supported by the National Nature Science Foun-
dation of China ͑50131040͒.
22. H. Oesterreicher, J. Clinton, and H. Bittner, Mater. Res. Bull., 11, 1241 ͑1976͒.
23. T. Takeshita, W. E. Wallace, and R. S. Craig, Inorg. Chem., 13, 2282 ͑1974͒.
24. J. Chen, H. T. Takeshita, H. Tanaka, N. Kuriyama, T. Sakai, I. Uehara, and M.
Haruta, J. Alloys Compd., 302, 304 ͑2000͒.
Zhejiang University assisted in meeting the publication costs of this
article.
2
2
5. H. G. Pan, Y. F. Liu, M. X. Gao, Y. F. Zhu, Y. Q. Lei, and Q. D. Wang, Int. J.
Hydrogen Energy, 28, 1219 ͑2003͒.
6. Y. Zhang, L. X. Chen, Y. Q. Lei, and Q. D. Wang, Int. J. Hydrogen Energy, 27, 501
͑2002͒.
References
1
2
. J. J. G. Willems and K. H. J. Buschow, J. Less-Common Met., 129, 13 ͑1987͒.
. T. Sakai, H. Miyamura, N. Kuriyama, A. Kato, K. Oguro, and H. Ishikawa, J.
Electrochem. Soc., 137, 795 ͑1990͒.
27. N. Kuriyama, T. Sakai, H. Miyamura, I. Uehara, H. Ishikawa, and T. Iwasaki, J.
Alloys Compd., 202, 183 ͑1993͒.
3
4
. H. G. Pan, J. X. Ma, C. S. Wang, C. P. Chen, and Q. D. Wang, Electrochim. Acta,
28. P. H. L. Notten and P. Hokkeling, J. Electrochem. Soc., 138, 1877 ͑1991͒.
29. T. Nishina, H. Ura, and I. Uchida, J. Electrochem. Soc., 144, 1273 ͑1997͒.
30. N. Cui and J. L. Luo, Int. J. Hydrogen Energy, 24, 37 ͑1999͒.
31. G. Zhang, B. N. Popov, and R. E. White, J. Electrochem. Soc., 142, 2695 ͑1995͒.
4
4, 3977 ͑1999͒.
. H. G. Pan, Y. F. Zhu, M. X. Gao, and Q. D. Wang, J. Electrochem. Soc., 149, A829
2002͒.
͑