DOI: 10.1039/D0CC06072K
ChemComm
in the modulation of d-band structure for WB2-I, while for WB2-II
strain effect is the main aspect. Therefore, WB2-I and WB2-II show
different variations of d-band center, compared with W surfaces.
21621001) and the 111 Project (B17020) for additional financial
support. We thank the LvLiang Cloud Computing Center of China,
and the calculations were performed on TianHe-2.
Conflicts of interest
50 There are no conflicts to declare.
Notes and references
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry,
College of Chemistry, Jilin University, Changchun 130012, P. R. China;
E-mail: xxzou@jlu.edu.cn; lgd@jlu.edu.cn
55 † Electronic Supplementary Information (ESI) available: [details of any
supplementary information available should be included here]. See
DOI:10.1039/b000000x/
‡ Q. Li and L. Wang contributed equally to this work.
1. H. Chen and X. Zou, Inorg. Chem. Front., 2020, 7, 2248-2264.
60 2. S. Gupta, M. K. Patel, A. Miotello and N. Patel, Adv. Funct. Mater.,
2019, 30, 1906481.
5 Fig. 4 (a) Calculated ΔGH* diagram of HER for WB2-I, WB2-II, WB3, WB,
W2B, W and Pt at 100% H* coverage. Slab models of (b) WB2-I surface
and (c) WB2-II surface. The insets are partial enlarged views of the
corresponding surfaces. (d) The d-band centers of the surface W atoms in
W, WB2-I and WB2-II, as well as schematic explanation for the effect of d-
10 band center change on the H adsorption energy.
3. S. Carenco, D. Portehault, C. Boissiere, N. Mezailles and C. Sanchez,
Chem. Rev., 2013, 113, 7981-8065.
4. G. Akopov, M. T. Yeung and R. B. Kaner, Adv. Mater., 2017, 29.
65 5. H. Tang, X. Gao, J. Zhang, B. Gao, W. Zhou, B. Yan, X. Li, Q. Zhang,
S. Peng, D. Huang, L. Zhang, X. Yuan, B. Wan, C. Peng, L. Wu, D.
Zhang, H. Liu, L. Gu, F. Gao, T. Irifune, R. Ahuja, H.-K. Mao and H.
Gou, Chem. Mater., 2019, 32, 459-467.
To reveal how the crystal phase affects the surface catalytic
6. R. Mohammadi, C. L. Turner, M. Xie, M. T. Yeung, A. T. Lech, S. H.
70
Tolbert and R. B. Kaner, Chem. Mater., 2016, 28, 632-637.
7. Y. Shao, M. Shao, Y. Kawazoe, X. Shi and H. Pan, J. Mater. Chem. A,
2018, 6, 10226-10232.
8. T. Mori, J. Solid State Chem., 2019, 275, 70-82.
9. F. Guo, Y. Wu, H. Chen, Y. Liu, L. Yang, X. Ai and X. Zou, Energy
Environ. Sci., 2019, 12, 684-692.
휀
behaviors, we further tried to correlate the d-band center ( d) with
the catalytic activity of intermetallic tungsten borides (Table S10
in SI). However, there is no good consistency. This can be
15 explained by the fact that the d-band center is a simple but not
푊
precise descriptor, and the d-band width ( d) also affects the
75
10. J. Li, H. Chen, Y. Liu, R. Gao and X. Zou, J. Mater. Chem. A, 2019,
7, 5288-5294.
11. X. Liu, Y. Jiao, Y. Zheng and S.-Z. Qiao, ACS Catal., 2020, 10, 1847-
1854.
80 12. D. Chen, T. Liu, P. Wang, J. Zhao, C. Zhang, R. Cheng, W. Li, P. Ji,
Z. Pu and S. Mu, ACS Energy Lett., 2020, 5, 2909-2915.
13. B.-J. Liaw, C.-H. Chen and Y.-Z. Chen, Chem. Eng. J., 2010, 157, 140-
145.
interaction energy. Thus, we used a slightly more advanced
휀W = 휀 + 푊 /2
descriptor,
, the upper band-edge energy proposed
d
d
d
by Nørskov at al.25 As shown in Table S10 in SI, the upper band-
20 edge energy decreases in the order of: WB3 > W2B > WB > WB2-
I. Since the upper band-edge energy intrinsically controls the
position and occupation of the antibonding states, the upper band-
edge energy becomes smaller, and the H adsorption energy (i.e.,
ΔGH*) becomes weaker correspondingly. There is a linear
25 correlation between ΔGH* and upper band-edge energy (Fig. S15
in SI). Besides, the upper band-edge energy correlates with the d-
band center and d-band width, so it is also affected by the
combination of strain effect and ligand effect. These results imply
that due to the increase of boron content, different crystal phases
30 have different degrees of interatomic d-sp orbital hybridization and
lattice expansion, thereby will lead to variations of upper band-
edge energy and trend of catalytic activities.
14. X. Wang, G. Tai, Z. Wu, T. Hu and R. Wang, J. Mater. Chem. A, 2017,
85
5, 23471-23475.
15. H. Zhang, H. Xiang, F.-z. Dai, Z. Zhang and Y. Zhou, J. Mater. Sci.
Technol., 2018, 34, 2022-2026.
16. Q. Li, X. Zou, X. Ai, H. Chen, L. Sun and X. Zou, Adv. Energy Mater.,
2019, 9, 1803369.
90 17. F. Guo, Y. Wu, X. Ai, H. Chen, G. D. Li, W. Chen and X. Zou, Chem.
Commun., 2019, 55, 8627-8630.
18. X. Ai, X. Zou, H. Chen, Y. Su, X. Feng, Q. Li, Y. Liu, Y. Zhang and
X. Zou, Angew. Chem. Int. Ed., 2020, 59, 3961-3965.
19. X. Zou, L. Wang, X. Ai, H. Chen and X. Zou, Chem. Commun., 2020,
95
56, 3061-3064.
In summary, we have synthesized four crystal phases of
intermetallic tungsten borides, and investigated their crystal and
35 electronic structures as well as phase-dependent hydrogen
evolution activities. We have also demonstrated the influence of
interatomic d-sp orbital hybridization on catalytic activities in
intermetallic tungsten borides. Our results have provided scientific
basis for the precise synthesis of other intermetallic borides and the
40 study of boron-regulated catalytic processes for various chemical
reactions.
X. Z. thanks the financial supports from the National Natural
Science Foundation of China (NSFC) Grant No. 21771079 and
21922507 and the Fok Ying Tung Education Foundation, Grant
45 No. 161011. We also acknowledge NSFC (21975093 and
20. E. Lee, H. Park, H. Joo and B. P. T. Fokwa, Angew. Chem. Int. Ed.,
2020, 59, 11774-11778.
21. Q. Tao, D. Zheng, X. Zhao, Y. Chen, Q. Li, Q. Li, C. Wang, T. Cui,
Y. Ma, X. Wang and P. Zhu, Chem. Mater., 2014, 26, 5297-5302.
100 22. J. Chrzanowska-Giżyńska, P. Denis, S. Woźniacka and Ł. Kurpaska,
Ceram. Int., 2018, 44, 19603-19611.
23. J. O. M. Bockris and E. C. Potter, J. Electrochem. Soc., 1952, 99, 169.
24. B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen,
S. Horch, I. Chorkendorff and J. K. Nørskov, J. Am. Chem. Soc., 2005,
105
127, 5308.
25. J. K. Nørskov, F. Studt, F. Abild-Pedersen and T. Bligaard,
Fundamental Concepts in Heterogeneous Catalysis, Wiley, Hoboken,
2014.
4 | Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]