t
up to 97% ee; however, the presence of BuOH (1.2 or 2
equiv) and 20 mol % catalyst were required in order to
achieve efficient catalysis.3a
Table 1. Asymmetric 1,4-Addition of Nitromethane (1) to
trans-Chalcone (2a)a
entry
catalyst
time (h)
% yieldb
% eec,d
1
2
3
4
5
6
4a
4b
5a
5b
6
99
99
99
99
99
99
4
0
71
93
0
42 (S)
Herein, we report that new thiourea catalysts 5a,b and 7
efficiently promote the Michael reaction between nitro-
methane and chalcones with high levels of enantioselectivity.
Due to the privileged role in asymmetric organic synthesis,
we investigated the employment of cinchona alkaloid-based
catalysts in these Michael reactions.6 Wynberg and co-
workers demonstrated that natural cinchona alkaloids, with
a C-9 alcohol and a quinuclidine, could serve as bifunctional
chiral catalysts in Michael addition reactions by activating
the nucleophile and electrophile, respectively.7 However, the
natural cinchona-catalyzed addition of nitromethane (1) to
trans-chalcone (2a) (eq 1) proceeded smoothly only under
400 MPa pressure and resulted in only modest enantio-
selectivities.8
This result led us to conclude that the exploration of more
active bifunctional cinchona catalysts9 might be the key to
the development of more efficient catalytic processes.
Since the discovery of Etter and co-workers10 that diaryl
ureas readily form cocrystals with a variety of proton
acceptors, remarkable advances have been made in chiral
thiourea-catalyzed asymmetric reactions.11 These findings
prompted us to synthesize bifunctional thiourea derivatives
of cinchona alkaloids 5-7 capable of double-hydrogen
bonding Lewis activation (Figure 1) and apply them in the
95 (R)
96 (R)
7
59
86 (S)
a Reactions were carried out with 2a (5 mmol), 3 equiv of 1 (15 mmol)
in toluene (3 mL), and the catalyst indicated (4-7; 10 mol %) in capped
vials at 25 °C. b Yield of isolated product after chromatography. c Deter-
mined by HPLC using a Chiralpak AD column. d Absolute configuration
was determined by comparing the specific rotation of 3a with that of
literature data.13
These novel catalysts and their less acidic Lewis acid
precursor 4a and 4b were then studied for their ability to
mediate enantioselective 1,4-addition (Table 1). Quinine (4a)
turned out to be a poor catalyst, and epiquinine (4b) failed
to accelerate this transformation. However, the epithiourea
catalysts 5a and its pseudoenantiomer 7 afforded an espe-
cially promising result, which could be further improved by
using hydroquinine catalyst 5b. Surprisingly, the organo-
catalyst 6 with the natural configuration showed no actiVity
in this process. The change in the quinine-epiquinine
catalytic activity trend with the introduction of the stronger
Lewis acid thiourea moiety indicates that the proper con-
formation of the cinchona derivatives is crucial for successful
(6) Recent reviews on cinchona alkaloids: (a) Tian, S.-K.; Chen, Y.;
Hang, J.; Tang, L.; Deng, L. Acc. Chem. Res. 2004, 37, 621. (b) Kacprzak,
K.; Gawronski, J. Synthesis 2001, 961.
(7) Hiemstra, H.; Wynberg, H. J. Am. Chem. Soc. 1981, 103, 417.
(8) Sera, A.; Takagi, K.; Katayama, H.; Yamada, H. J. Org. Chem. 1988,
53, 1157.
(9) Other bifunctional cinchona alkaloid-based catalytic applications: (a)
France, S.; Shah, M. H.; Wheatherwax, A.; Wack, H.; Roth, J. P.; Lectka,
T. J. Am. Chem. Soc. 2005, 127, 1206. (b) Liu, X.; Li, H.; Deng, L. Org.
Lett. 2005, 7, 167. (c) Li, H.; Wang, Y.; Tang, L.; Wu, F.; Liu, X.; Guo,
C.; Foxman, B. M.; Deng, L. Angew. Chem., Int. Ed. 2004, 43, 2. (d) Li,
H.; Wang, Y.; Tang, L.; Wu, F.; Liu, X.; Guo, C.; Foxman, B. M.; Deng,
L. Angew. Chem., Int. Ed. 2004, 43, 105. (e) Li, H.; Wang, Y.; Tang, L.;
Deng L. J. Am. Chem. Soc. 2004, 126, 9906. (f) Saaby, S.; Bella, M.;
Jørgensen, K. A. J. Am. Chem. Soc. 2004, 126, 8120. (g) Kawahara, S.;
Nakano, A.; Esumi, T.; Iwabuchi, Y.; Hatakeyama, S. Org. Lett. 2003, 5,
3103. (h) Balan, D.; Adolfsson, H. Tetrahedron Lett. 2003, 44, 2521. (i)
Shi, M.; Xu, Y.-M. Angew. Chem., Int. Ed. 2002, 41, 4507.
(10) Etter, M. C. Acc. Chem. Res. 1990, 23, 120.
(11) Most recent papers using thiourea catalysts: (a) Berkessel, A.;
Cleemann, F.; Mukherjee, S.; Mu¨ller, T. N.; Lex, J. Angew. Chem., Int.
Ed. 2005, 44, 807. (b) Yoon, T. P.; Jacobsen, E. N. Angew. Chem., Int. Ed.
2005, 44, 466. (c) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto,
Y. J. Am. Chem. Soc. 2005, 127, 119. (d) Taylor, M. S.; Jacobsen, E. N. J.
Am. Chem. Soc. 2004, 126, 10558. (e) Joly, G. D.; Jacobsen, E. N. J. Am.
Chem. Soc. 2004, 126, 4102. (f) Taylor, M. S.; Jacobsen, E. N. J. Am.
Chem. Soc. 2004, 126, 119. (g) Okino, T.; Nakamura, S.; Furukawa, T.;
Takemoto, Y. Org. Lett. 2004, 6, 625. (h) Sohtome, Y.; Tanatani, A.;
Hashimoto, Y.; Nagasawa, K. Tetrahedron Lett. 2004, 45, 5589. (i). Okino,
T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672. (j)
Schreiner, P. R.; Wittkopp, A. Org. Lett. 2002, 4, 217.
Figure 1. Bifunctional cinchona organocatalysts 4-7.
conjugate addition of nitromethane (1) to trans-chalcone (2a)
(Table 1).
Catalysts 5-7 (Figure 1) were prepared from quinine (4a),
epiquinine (4b), and quinidine via experimentally simple two-
step protocols.12
(12) For details see Supporting Information.
(13) Botteghi, C.; Paganelli, S.; Schionato, A.; Boga, C.; Fava, A. J.
Mol. Catal. 1991, 66, 7.
1968
Org. Lett., Vol. 7, No. 10, 2005