C O M M U N I C A T I O N S
Chart 1. Diastereo- and/or Regioselective Asymmetric Additions
of Ketones to Nitroalkenesa
analysis of racemic and enantiomerically enriched products. This
References
(1) (a) Ono, N. The Nitro Group in Organic Synthesis; Wiley-VCH: New
York, 2001. (b) Czekelius, C.; Carreira, E. M. Angew. Chem., Int. Ed.
2005, 44, 612-615. (c) Calderari, G.; Seebach, D. HelV. Chim. Acta 1995,
58, 1592-1604.
(2) For a review, see: (a) Berner, O. M.; Tedeschi, L.; Enders, D. Eur. J.
Org. Chem. 2002, 1877-1894. For metal-catalyzed asymmetric conjugate
additions to nitroalkenes, see: (b) Evans, D. A.; Seidel, D. J. Am. Chem.
Soc. 2005, 127, 9958-9959. (c) Watanabe, M.; Ikagawa, A.; Wang, H.;
Murata, K.; Ikariya, T. J. Am. Chem. Soc. 2004, 126, 11148-11149. (d)
Duursma, A.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc. 2003,
125, 3700-3701. (e) Alexakis, A.; Benhaim, C.; Rosset, S.; Humam, M.
J. Am. Chem. Soc. 2002, 124, 5262-5263. (f) Luchaco-cullis, C. A.;
Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 8192-8193. (g) Hayashi,
T.; Senda, T.; Ogasawara, M. J. Am. Chem. Soc. 2000, 122, 10716-
10717. (h) Ji, J.; Barnes, D. M.; Zhang, J.; King, S. A.; Wittenberger, S.
J.; Morton, H. E. J. Am. Chem. Soc. 1999, 121, 10215-10216.
(3) For organocatalytic conjugate additions of 1,3-dicarbonyl compounds to
nitroalkenes, see: (a) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem.
Soc. 2003, 125, 12672-12673. (b) Li, H.; Wang, Y.; Tang, L.; Deng, L.
J. Am. Chem. Soc. 2004, 126, 9906-9907. (c) Li, H.; Wang, Y.; Tang,
L.; Wu, F.; Liu, C.; Guo, C.; Foxman, B. M.; Deng, L. Angew. Chem.,
Int. Ed. 2005, 44, 105-108. (d) McCooey, S. H.; Connon, S. J. Angew.
Chem., Int. Ed. 2005, 44, 6367-6370.
(4) (a) Tsogoeva, S. B.; Yalalov, D. A.; Hateley, M. J.; Weckbecker, C.;
Huthmacher, K. Eur. J. Org. Chem. 2005, 4995-5000. (b) Andrey, O.;
Alexakis, A.; Tomassini, A.; Bernardinelli, G. AdV. Synth. Catal. 2004,
346, 1147-1168. (c) Betancort, J. M.; Sakthivel, K.; Thayumanavan, R.;
Tanaka, F.; Barbas, C. F., III. Synthesis 2004, 1509-1521. (d) Ishii, T.;
Fujioka, S.; Sekiguchi, Y.; Kotsuki, H. J. Am. Chem. Soc. 2004, 126,
9558-9559. (e) Mitchell, C. E. T.; Cobb, A. J. A.; Ley, S. V. Synlett
2005, 611-614. (f) Enders, D.; Seki, A. Synlett 2002, 26-28. (g) List,
B.; Pojarliev, P.; Martin, H. J. Org. Lett. 2001, 3, 2423-2425. (h) Wang,
W.; Wang, J.; Li, H. Angew. Chem., Int. Ed. 2005, 44, 1369-1371. (i)
Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem., Int. Ed.
2005, 44, 4212-4215.
(5) During the final stages of preparation of this manuscript, a different primary
amine-thiourea catalyst system was reported for analogous ketone-
nitroalkene Michael reactions: Tsogoeva, S. B.; Wei, S. Chem. Commun.
2006, 1451-1453.
(6) For recent reviews, see: (a) Taylor, M. S.; Jacobsen, E. N. Angew. Chem.,
Int. Ed. 2006, 45, 1520-1543. (b) Connon, S. J. Chem.sEur. J. 2006,
Early View (DOI: 10.1002/chem.200501076).
(7) For examples of asymmetric catalysis based on the primary amine
functionality, see: (a) Pizzarello, S.; Weber, A. L. Science 2004, 303,
1151. (b) Tanaka, F.; Thayumanavan, R.; Mase, N.; Barbas, C. F., III.
Tetrahedron Lett. 2004, 45, 325-328. (c) Amedjkouh, M. Tetrahedron:
Asymmetry 2005, 16, 1411-1414. (d) Bassan, A.; Zou, W.; Reyes, E.;
Himo, F.; Co´rdova, A. Angew. Chem., Int. Ed. 2005, 44, 7028-7032 and
references therein.
(8) Results obtained with representative catalyst structures are provided as
Supporting Information.
(9) To our knowledge, these represent the first examples of highly enanti-
oselective asymmetric addition of ketones to aliphatic nitroolefins. For
earlier efforts, see ref 4g.
a rr ) regioisomer ratio. Method A: 20 mol % of 1, 2 mol % of PhCO2H,
1.5-5.0 equiv of ketone. Method B: 10 mol % of 1, 1.5 equiv of ketone.
Method C: 20 mol % of 1, 2.0 equiv of ketone.
soluble byproducts were detected, and the moderate product yields
(50-65%) appear to reflect formation of small amounts of insoluble
polymeric materials. The observed sense of relative stereoinduction
stands in contrast to results obtained with secondary amine catalysts,
which lead to selective formation of the syn diastereomers.4,13 As
might be anticipated from the results leading to 5a-e, additions of
methyl propyl ketone provided linear products (5f, 5h) with modest
(4:1) regioselectivity and excellent enantioselectivity, while the more
sterically demanding methyl isopropyl ketone afforded linear
products (5g, 5i) exclusively. However, branched products (5j, 5k)
were obtained with methoxyacetone as the Michael donor.
(10) Added benzoic acid leads to increased product yield, but does not affect
the enantioselectivity of these reactions. Therefore, it is likely not involved
in the ee-determining conjugate addition step, but rather only in minimizing
byproduct formation by accelerating the delicate balance of imine and
enamine formation and imine hydrolysis steps in the desired catalytic
pathway. No beneficial effect of added acid was observed for certain
substrate combinations (see Chart 1).
A bifunctional mechanism involving enamine catalysis is clearly
indicated in Michael reactions promoted by catalyst 1. The observed
anti diastereoselectivity suggests participation of a Z-enamine
intermediate (Figure 1), given the complementary diastereoselec-
(11) The absolute configuration of 3a was established by comparison of the
rotation value with published data: Seebach, D.; Lyapkalo, I. M.;
Dahinden, R. HelV. Chim. Acta 1999, 82, 1829-1842.
(12) The relative configuration was assigned by comparison with published
data: Yamamoto, Y.; Nishii, S. J. Org. Chem. 1988, 53, 3597-3603.
(13) Alexakis et al. have reported an anti-selective Michael addition using
R-hydroxyacetone, but only this particular substrate afforded anti product.
Other substituted ketones afforded syn Michael adducts. See ref 4b and
(a) Andrey, O.; Alexakis, A.; Bernardinelli, G. Org. Lett. 2003, 5, 2559-
2561. (b) Andrey, O.; Alexakis, A. G. Org. Lett. 2002, 4, 3611-3614.
(14) Consistent with this hypothesis, cyclic ketones capable only of forming
E-enamines afford syn products. See also ref 5.
Figure 1. Proposed intermediates in Michael reactions catalyzed by 1. (A)
Favored Z-enamine. (B) Disfavored E-enamine.
(15) The precise mode of nitroalkene binding to the thiourea is not known.
Ground state structures determined both experimentally (Etter, M. C.;
Urbanczyk-Lipkowska, Z.; Zia-Ebrahimi, M.; Panunto, T. W. J. Am. Chem.
Soc. 1990, 112, 8415-8426) and computationally (Zuend, S.; Jacobsen,
E. N., unpublished) point to an in-plane arrangement with each thiourea
hydrogen bound to one oxygen of the nitro group as most stable. However,
modeling studies suggest that an out-of-plane binding geometry, wherein
only one of the nitro group oxygens is engaged by the thiourea, may be
required for intramolecular reaction with the enamine.
tivity obtained in analogous reactions involving E-enamines gener-
ated from secondary amine catalysts.14,15 The utility of bifunctional
primary amine catalysts in other valuable organic transformations
is under active investigation.16
Acknowledgment. This work was supported by the NIGMS
(16) For example, aldehydes participate in highly enantioselective additions
to nitroalkenes with primary amine-thiourea catalysts closely related to
1: Lalonde, M. P.; Chen, Y.; Jacobsen, E. N. work in progress.
through GM-43214 and P50 GM069721.
Supporting Information Available: Catalysts screening studies,
experimental procedures, analytical data, and chiral chromatographic
JA0620890
9
J. AM. CHEM. SOC. VOL. 128, NO. 22, 2006 7171