1 afforded desired bifunctional thiourea catalysts 2a,b with
the glycosyl scaffold and the primary amine group in good
yields (60% for 2a and 61% for 2b) (Scheme 1). Using the
esters, ketonesters, 1,3-diketones, and 1,3-dinitriles.9 In
contrast, little progress has been made in the development
of aromatic ketones as Michael donors, and only one report
by Jacobsen and co-workers has addressed two acetophe-
nones as nucleophilic species.4b We are delighted to find that
the saccharide-substituted primary amine-thiourea 2 serves
as an efficient organocatalyst for direct asymmetric conjugate
addition of aromatic ketones to a broad spectrum of nitroole-
fins with excellent enantioselectivities up to 98% ee.
In the presence of 15 mol % of 2a-d, the addition reaction
of acetophenone with nitrostyrene was examined under
different conditions. Table 1 summarizes the results. Bi-
Scheme 1. Synthesis of Saccharide-Substituted Bifunctional
Primary Amine-thiourea Catalysts
Table 1. Enantioselective Addition of Acetophenone to
Nitrostyrenea
entry
catalyst
solvent
yield (%)b
ee (%)c
1
2
3
4
5
6
7
8
9
2a
2b
2c
2d
2b
2b
2b
2b
2b
2b
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
THF
toluene
CHCl3
n-hexane
ether
46
60
<10
17
16
42
62
27
23
72
87 (R)
97 (S)
93 (S)
96 (S)
91 (S)
95 (S)
96 (S)
93 (S)
95 (S)
97 (S)
10d
CH2Cl2
a
The reaction was conducted with 2 (0.15 equiv), acetophenone (10
b
c
equiv), and several solvents.
Isolated yield. The ee values were
determined by HPLC, and the configuration was assigned by comparison
d
of retention time and specific rotation with that of the literature data.
Reaction time was 96 h.
same procedure, thiourea catalysts 2c and 2d were also
synthesized from maltose and lactose, respectively (in a yield
of 60% for 2c and 73% for 2d).
functional amine-thiourea 2a promoted the addition with a
high enantioselectivity of 87% ee but a moderate yield of
46% (entry 1). Gratifyingly, chiral catalyst 2b exhibited a
superior level of stereoselectivity with an opposite sense of
asymmetric induction and up to 97% ee can be obtained
(entry 2). This indicates that the (R,R)-configuration of 1,2-
diaminocyclohexane matched the â-D-glucopyranose to
enhance the stereochemical control. Bifunctional catalysts
The conjugate addition of nucleophiles to electron-deficient
olefins (the Michael addition reaction) is an important tool
for the construction of highly functionalized carbon skeletons.
Among the variants of this strategy, direct catalytic Michael
addition of carbonyl compounds to nitroolefins appears to
be the most facile route to produce the useful building blocks
in an atom-economical manner.6 In recent years, numbers
of small organic molecules have been developed as efficient
catalysts for the asymmetric conjugate addition to nitroolefins
with simple aldehydes,7 aliphatic acyclo and cycloketones,8
as well as more reactive nucleophiles, such as malonate
(8) For selected examples of asymmetric conjugate additions of aliphatic
(cyclo)ketones to nitroolefins, see: (a) Andrey, O.; Alexakis, A.; Tomassini,
A.; Bernardinelli, G. AdV. Synth. Catal. 2004, 346, 1147. (b) Ishii, T.;
Fujioka, S.; Sekiguchi, Y.; Kotsuki, H. J. Am. Chem. Soc. 2004, 126, 9558.
(c) Luo, S.; Mi, X.; Zhang, L.; Liu, S.; Xu, H.; Cheng, J.-P. Angew. Chem.,
Int. Ed. 2006, 45, 3093. (d) Enders, D.; Chow, S. Eur. J. Org. Chem. 2006,
20, 4578. (e) Dixon, D. J.; Richardson, R. D. Synlett 2006, 81. (f) Mase,
N.; Watanabe, K.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas, C. F., III J.
Am. Chem. Soc. 2006, 128, 4966. (g) Pansare, S. V.; Pandya, K. J. Am.
Chem. Soc. 2006, 128, 9624. (h) Zhu, M.-K.; Cun, L.-F.; Mi, A.-Q.; Jiang,
Y.-Z.; Gong, L.-Z. Tetrahedron: Asymmetry 2006, 17, 491. (i) Li, Y.; Liu,
X.-Y.; Zhao, G. Tetrahedron: Asymmetry 2006, 17, 2034. (j) Almasi, D.;
Alonso, D. A.; Najera, C. Tetrahedron: Asymmetry 2006, 17, 2064. For
other examples, see: ref 2 and refs therein.
(9) For selected examples of asymmetric conjugate additions of relatively
acidic carbon pronucleophiles to nitroolefins, see: (a) Li, H.; Wang, Y.;
Tang, L.; Deng, L. J. Am. Chem. Soc. 2004, 126, 9906. (b) Li, H.; Wang,
Y.; Tang, L.; Wu, F.; Liu, X.; Guo, C.; Foxman, B. M.; Deng, L. Angew.
Chem., Int. Ed. 2005, 44, 105. (c) Terada, M.; Ube, H.; Yaguchi, Y. J. Am.
Chem. Soc. 2006, 128, 1454. For other examples, see: ref 2 and refs therein.
(5) (a) Lindhorst, T.; Kieburg, C. Synthesis 1995, 10, 1228. (b) Selkti,
M.; Kassab, R.; Lopez, H. P.; Villain, F.; de Rango, C. J. Carbohydr. Chem.
1999, 18, 1019.
(6) For a review of asymmetric Michael addition to nitroolefins, see:
Berner, O. M.; Tedeschi, L.; Enders, D. Eur. J. Org. Chem. 2002, 1877.
(7) For selected examples of asymmetric conjugate additions of aldehydes
to nitroolefins, see: (a) Mase, N.; Thayumanavan, R.; Tanaka, F.; Barbas,
C. F., III Org. Lett. 2004, 6, 2527. (b) Wang, W.; Wang, J.; Li, H. Angew.
Chem., Int. Ed. 2005, 44, 1369. (c) Hayashi, Y.; Gotoh, H.; Hayashi, T.;
Shoji, M. Angew. Chem., Int. Ed. 2005, 44, 4212. (d) Palomo, C.; Mielgo,
S.; Vera, A.; Go´mez-Bengoa, E. Angew. Chem., Int. Ed. 2006, 45, 5984.
(e) Enders, D.; Hu¨ttl, M. R. M.; Grondal, C.; Raabe, G. Nature 2006, 441,
861. (f) Wang, J.; Li, H.; Lou, B.; Zu, L.; Guo, H.; Wang, W. Chem.-Eur.
J. 2006, 12, 4321. (g) Mosse´, S.; Laars, M.; Kriis, K.; Kanger, T.; Alexakis,
A. Org. Lett. 2006, 8, 2559. For other examples, see ref 2 and refs therein.
924
Org. Lett., Vol. 9, No. 5, 2007