Edge Article
Chemical Science
substrate (entry 4), delivering 3r in 56% yield. Examination of
the substrate scope revealed that this transformation could
accommodate a variety of functional groups, including nitro
6 S. Zhang, Y. Wei, S. Yin and C.-t. Au, Catal. Commun., 2011,
12, 712–716.
7 R. Corber ´a n, S. Marrot, N. Dellus, N. Merceron-Saffon,
T. Kato, E. Peris and A. Baceiredo, Organometallics, 2009,
28, 326–330.
(
(
entry 2), ester (entry 5), alkyl halide (entry 6), and aryl halide
entry 7) groups. To the best of our knowledge, this method-
ology represents the rst metal-catalyzed approach to the
intermolecular anti-Markovnikov hydroamination of an unbi-
ased olen with an aryl amine. Furthermore, it should be noted
that this catalytic system allows access to elusive linear amine
adducts through a one-pot technique, thus avoiding isolation of
less stable aldehyde intermediates.
8 (a) C. Munro-Leighton, S. A. Delp, E. D. Blue and
T. B. Gunnoe, Organometallics, 2007, 26, 1483–1493; (b)
C. Munro-Leighton, S. A. Delp, N. M. Alsop, E. D. Blue and
T. B. Gunnoe, Chem. Commun., 2008, 111–113.
9 G. V. Shanbhag, S. M. Kumbar and S. B. Halligudi, J. Mol.
Catal. A: Chem., 2008, 284, 16–23.
10 T. Joseph, G. V. Shanbhag, D. P. Sawant and S. B. Halligudi,
J. Mol. Catal. A: Chem., 2006, 250, 210–217.
Conclusions
1
1 (a) D. C. Leitch, P. R. Payne, C. R. Dunbar and
L. L. Schafer, J. Am. Chem. Soc., 2009, 131, 18246–18247;
(b) A. Takemiya and J. F. Hartwig, J. Am. Chem. Soc.,
2006, 128, 6042–6043.
In summary, a one-pot methodology for the intermolecular
anti-Markovnikov hydroamination of olens with aryl amines
has been developed. The scope of the methodology is broad
with respect to the olen, and although the amine substrate 12 M. Beller, H. Trauthwein, M. Eichberger, C. Breindl,
scope is more limited, the use of amines with removable aryl
protecting group expands the suite of accessible linear
J. Herwig, T. E. M u¨ ller and O. R. Thiel, Chem.–Eur. J., 1999,
5, 1306–1309.
amines. This mild methodology complements existing litera- 13 P. Horrillo-Mart ´ı nez, K. C. Hultzsch, A. Gil and
ture and contributes to less developed areas of hydro- V. Branchadell, Eur. J. Org. Chem., 2007, 3311–3325.
amination research, namely the anti-Markovnikov 14 K. Kumar, D. Michalik, I. Garcia Castra, A. Tillack, A. Zapf,
intermolecular hydroamination of aliphatic olens, as well as
the use of aryl amines.
M. Arlt, T. Heinrich, H. B ¨o ttcher and M. Beller, Chem.–Eur.
J., 2004, 10, 746–757.
1
5 (a) M. Utsunomiya, R. Kuwano, M. Kawatsura and
J. F. Hartwig, J. Am. Chem. Soc., 2003, 125, 5608–5609; (b)
M. Utsunomiya and J. F. Hartwig, J. Am. Chem. Soc., 2004,
126, 2702–2703; (c) J. Takaya and J. F. Hartwig, J. Am.
Chem. Soc., 2005, 127, 5756–5757.
Acknowledgements
Research reported in this publication was supported by the
National Institute of General Medical Sciences of the National
Institutes of Health under Award Number F32GM102984. NMR 16 J.-S. Ryu, G. Y. Li and T. J. Marks, J. Am. Chem. Soc., 2003, 125,
spectra were obtained by instruments supported by the NIH 12584–12605.
RR027690). We are grateful to J. S. Cannon, B. Morandi, and 17 (a) A. G. M. Barrett, C. Brinkmann, M. R. Crimmin, M. S. Hill,
(
Z. K. Wickens for helpful discussions.
P. Hunt and P. A. Procopiou, J. Am. Chem. Soc., 2009, 131,
2906–12907; (b) C. Brinkmann, A. G. M. Barrett, M. S. Hill
1
and P. A. Procopiou, J. Am. Chem. Soc., 2012, 134, 2193–2207.
8 R. P. Rucker, A. M. Whittaker, H. Dang and G. Lalic, J. Am.
Chem. Soc., 2012, 134, 6571–6574.
19 (a) J. Guin, C. M u¨ ck-Lichtenfeld, S. Grimme and A. Studer, J.
Am. Chem. Soc., 2007, 129, 4498–4504; (b) C.-M. Chou,
J. Guin, C. M u¨ ck-Lichtenfeld, S. Grimme and A. Studer,
Chem.–Asian J., 2011, 6, 1197–1209.
Notes and references
1
1
The Chemistry of the Amino Group, ed. S. Patai, Interscience,
New York, 1968.
2
(a) Green Chemistry: Challenging Perspectives, ed. P. Tundo
and P. T. Anastas, Oxford Science, Oxford, 1999; (b)
R. A. Sheldon, CHEMTECH, 1994, 38–47.
3
4
J. Haggin, Chem. Eng. News, 1993, 71, 23.
(a) K. D. Hesp and M. Stradiotto, ChemCatChem, 2010, 2, 1192–
20 (a) J. Moran, S. I. Gorelsky, E. Dimitrijevic, M.-E. Lebrun,
A.-C. Bedard, C. Seguin and A. M. Beauchemin, J. Am.
Chem. Soc., 2008, 130, 17893–17906; (b) F. Loiseau,
C. Clavette, M. A. Raymond, J.-G. Roveda, A. Burrell and
A. M. Beauchemin, Chem. Commun., 2011, 47, 562–564.
1
207; (b) T. E. M u¨ ller, K. C. Hultzsch, M. Yus, F. Foubelo and
M. Tada, Chem. Rev., 2008, 108, 3795–3892; (c) J. F. Hartwig,
Transition-Metal-Catalyzed Hydroamination of Olens and
Alkynes, in Organotransition Metal Chemistry, University 21 Very recently, the Nicewicz group disclosed a report of the
Science Books, Mill Valley, CA, 2010, ch. 16.5, pp. 700–717.
In contrast, intermolecular anti-Markovnikov hydroamination
of alkynes is a more precedented transformation. For
pertinent reviews, see:(a) T. E. M u¨ ller and M. Beller, Chem.
anti-Markovnikov hydroamination of alkenes by an organic
photoredox system. Their ndings include two
intermolecular examples. T. M. Nguyen and D. A. Nicewicz,
J. Am. Chem. Soc., 2013, 135, 9588–9591.
5
Rev., 1998, 98, 675–704; (b) R. Severin and S. Doye, Chem. Soc. 22 P. Teo, Z. K. Wickens, G. Dong and R. H. Grubbs, Org. Lett.,
Rev., 2007, 36, 1407–1420; (c) F. Pohlki and S. Doye, Chem. 2012, 14, 3237–3239.
Soc. Rev., 2003, 32, 104–114; (d) A. L. Reznichenko and 23 (a) T. T. Wenzel, J. Chem. Soc., Chem. Commun., 1993,
K. C. Hultzsch, Top. Organomet. Chem., 2013, 43, 51–114, also
see ref. 4b.
862–864; (b) J. Muzart, Tetrahedron, 2007, 63, 7505–
7521; (c) B. L. Feringa, J. Chem. Soc., Chem. Commun., 1986,
This journal is © The Royal Society of Chemistry 2014
Chem. Sci., 2014, 5, 101–106 | 105