The Journal of Organic Chemistry
Page 8 of 9
(
3) Politz, J. C. Use of caged fluorochromes to track macromolecular
movement in living cells. Trends Cell Biol. 1999, 9, 284.
4) Fernandez-Suarez, M.; Ting, A. Y. Fluorescent probes for super-
resolution imaging in living cells. Nat. Rev. Mol. Cell. Biol. 2008, 9,
29.
5) Raymo, F. M. Photoactivatable Synthetic Dyes for Fluorescence
Imaging at the Nanoscale. J. Phys. Chem. Lett. 2012, 3, 2379.
6) Shao, Q.; Xing, B. Photoactive molecules for applications in
molecular imaging and cell biology. Chem. Soc. Rev. 2010, 39, 2835.
7) Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W.;
(24) Shieh, P.; Dien, V. T.; Beahm, B. J.; Castellano, J. M.; Wyss-
Coray, T.; Bertozzi, C. R. CalFluors: A Universal Motif for
Fluorogenic Azide Probes across the Visible Spectrum. J. Am. Chem.
Soc. 2015, 137, 7145.
(25) Gritsan, N. P.; Platz, M. S. Kinetics, spectroscopy, and
computational chemistry of arylnitrenes. Chem. Rev. 2006, 106, 3844.
(26) Budyka, M. F. Photodissociation of Aromatic Azides. Uspekhi
Khimii 2008, 77, 757.
(27) Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Organic
azides: an exploding diversity of a unique class of compounds. Angew.
Chem. Int. Ed. 2005, 44, 5188.
(28) Murata, S.; Sugawara, T.; Iwamura, H. Reactivities of
Rotameric Ap and Sp-3,5-Dimethyl-2-(9-Fluorenyl)Phenylnitrenes. J.
Am. Chem. Soc. 1985, 107, 6317.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
(
9
(
(
(
Olenych, S.; Bonifacino, J. S.; Davidson, M. W.; Lippincott-Schwartz,
J.; Hess, H. F. Imaging intracellular fluorescent proteins at nanometer
resolution. Science 2006, 313, 1642.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(8) Li, W. H.; Zheng, G. Photoactivatable fluorophores and
techniques for biological imaging applications. Photochem. Photobiol.
Sci. 2012, 11, 460.
(29) Borden, W. T.; Gritsan, N. P.; Hadad, C. M.; Karney, W. L.;
Kemnitz, C. R.; Platz, M. S. The interplay of theory and experiment in
the study of phenylnitrene. Acc. Chem. Res. 2000, 33, 765.
(30) Liu, L. H.; Yan, M. Perfluorophenyl azides: new applications
in surface functionalization and nanomaterial synthesis. Acc. Chem.
Res. 2010, 43, 1434.
(31) Park, J.; Yan, M. Covalent functionalization of graphene with
reactive intermediates. Acc. Chem. Res. 2013, 46, 181.
(32) Bordwell, F. G.; Hughes, D. L. Nucleophilic aromatic
substitution reactions with carbanions and nitranions in dimethyl
sulfoxide solution. J. Am. Chem. Soc. 1986, 108, 5991.
(33) Crawford, L. A.; Ieva, M.; McNab, H.; Parsons, S. Structural
studies of some push-pull N-arylbenzazoles. Dalton Trans. 2010, 39,
7147.
(34) Biemans, H. A.; Zhang, C.; Smith, P.; Kooijman, H.; Smeets,
W. J.; Spek, A. L.; Meijer, E. W. Hexapyrrolylbenzene and
Octapyrrolylnaphthalene. J. Org. Chem. 1996, 61, 9012.
(35) Nenri, R. N.; Yeager, W. H. Reaction of diazole anions with
hexafluorobenzene: an unexpectedly facile entry into hexa (diazol-1-
yl)-benzenes. Heterocycles 1993, 35, 415.
(9) Lukyanov, K. A.; Chudakov, D. M.; Lukyanov, S.; Verkhusha,
V. V. Innovation: Photoactivatable fluorescent proteins. Nat. Rev. Mol.
Cell. Biol. 2005, 6, 885.
(
10) Raymo, F. M. Photoactivatable synthetic fluorophores. Phys.
Chem. Chem. Phys. 2013, 15, 14840.
11) Klan, P.; Solomek, T.; Bochet, C. G.; Blanc, A.; Givens, R.;
(
Rubina, M.; Popik, V.; Kostikov, A.; Wirz, J. Photoremovable
protecting groups in chemistry and biology: reaction mechanisms and
efficacy. Chem. Rev. 2013, 113, 119.
(12) Bao, C.; Zhu, L.; Lin, Q.; Tian, H. Building biomedical
materials using photochemical bond cleavage. Adv. Mater. 2015, 27,
1647.
(13) Yu, Z.; Ho, L. Y.; Lin, Q. Rapid, photoactivatable turn-on
fluorescent probes based on an intramolecular photoclick reaction. J.
Am. Chem. Soc. 2011, 133, 11912.
(14) Tran, M. N.; Chenoweth, D. M. Photoelectrocyclization as an
activation mechanism for organelle-specific live-cell imaging probes.
Angew. Chem. Int. Ed. 2015, 54, 6442.
(15) Gu, X.; Zhao, E.; Zhao, T.; Kang, M.; Gui, C.; Lam, J. W.; Du,
(36) Amii, H.; Uneyama, K. C-F bond activation in organic synthesis.
Chem. Rev. 2009, 109, 2119.
S.; Loy, M. M.; Tang, B. Z. Mitochondrion-Specific
A
Photoactivatable Fluorescence Turn-On AIE-Based Bioprobe for
Localization Super-Resolution Microscope. Adv. Mater. 2016, 28,
5064.
(37) Deng, L.; Norberg, O.; Uppalapati, S.; Yan, M.; Ramström, O.
Stereoselective synthesis of light-activatable perfluorophenylazide-
conjugated carbohydrates for glycoarray fabrication and evaluation of
structural effects on protein binding by SPR imaging. Org. Biomol.
Chem. 2011, 9, 3188.
(38) Lord, S. J.; Lee, H. L.; Moerner, W. E. Single-molecule
spectroscopy and imaging of biomolecules in living cells. Anal. Chem.
2010, 82, 2192.
(39) Groger, M.; Holnthoner, W.; Maurer, D.; Lechleitner, S.; Wolff,
K.; Mayr, B. B.; Lubitz, W.; Petzelbauer, P. Dermal microvascular
endothelial cells express the 180-kDa macrophage mannose receptor in
situ and in vitro. J. Immunol. 2000, 165, 5428.
(40) Sheikh, H.; Yarwood, H.; Ashworth, A.; Isacke, M. C.
Endo180, an endocytic recycling glycoprotein related to the
macrophage mannose receptor is expressed on fibroblasts, endothelial
cells and macrophages and functions as a lectin receptor. J. Cell Sci.
2000, 113, 1021.
(41) van den Eijnden, M. M.; Saris, J. J.; de Bruin, R. J.; de Wit, E.;
Sluiter, W.; Reudelhuber, T. L.; Schalekamp, M. A.; Derkx, F. H.;
Danser, A. H. Prorenin accumulation and activation in human
endothelial cells: importance of mannose 6-phosphate receptors.
Arterioscler. Thromb. Vasc. Biol. 2001, 21, 911.
(42) Sharma, V.; Freeze, H. H. Mannose efflux from the cells: a
potential source of mannose in blood. J. Biol. Chem. 2011, 286, 10193.
(43) Sundhoro, M.; Jeon, S.; Park, J.; Ramström, O.; Yan, M.
Perfluoroaryl Azide–Staudinger Reaction: A Fast and Bioorthogonal
Reaction. Angew. Chem. Int. Ed., 2017, 56, 12117.
(44) Xie, S; Lopez, S. A.; Ramström, O; Yan, M.; Houk, K. N. 1,
3-Dipolar cycloaddition reactivities of perfluorinated aryl azides with
enamines and strained dipolarophiles. J. Am. Chem. Soc. 2015, 137,
2958.
(45) Louillat, M. L.; Patureau, F. W. Towards polynuclear Ru-Cu
catalytic dehydrogenative C-N bond formation, one the reactivity of
carbazoles. Org. Lett. 2013, 15, 164.
(16) Gao, M.; Su, H. F.; Lin, Y. H.; Ling, X.; Li, S. W.; Qin, A. J.;
Tang, B. Z. Photoactivatable aggregation-induced emission probes for
lipid droplets-specific live cell imaging. Chem. Sci. 2017, 8, 1763.
(17) Lord, S. J.; Conley, N. R.; Lee, H. L.; Nishimura, S. Y.;
Pomerantz, A. K.; Willets, K. A.; Lu, Z.; Wang, H.; Liu, N.; Samuel,
R.; Weber, R.; Semyonov, A.; He, M.; Twieg, R. J.; Moerner, W. E.
DCDHF fluorophores for single-molecule imaging in cells.
Chemphyschem 2009, 10, 55.
(18) Lord, S. J.; Conley, N. R.; Lee, H. L.; Samuel, R.; Liu, N.;
Twieg, R. J.; Moerner, W. E. A photoactivatable push-pull fluorophore
for single-molecule imaging in live cells. J. Am. Chem. Soc. 2008, 130,
9
204.
19) Lee, H. L.; Lord, S. J.; Iwanaga, S.; Zhan, K.; Xie, H.; Williams,
(
J. C.; Wang, H.; Bowman, G. R.; Goley, E. D.; Shapiro, L.; Twieg, R.
J.; Rao, J.; Moerner, W. E. Superresolution imaging of targeted proteins
in fixed and living cells using photoactivatable organic fluorophores. J.
Am. Chem. Soc. 2010, 132, 15099.
(20) Pavani, S. R.; Thompson, M. A.; Biteen, J. S.; Lord, S. J.; Liu,
N.; Twieg, R. J.; Piestun, R.; Moerner, W. E. Three-dimensional,
single-molecule fluorescence imaging beyond the diffraction limit by
using a double-helix point spread function. Proc. Natl. Acad. Sci. U S
A 2009, 106, 2995.
(21) Lord, S. J.; Lee, H. L.; Samuel, R.; Weber, R.; Liu, N.; Conley,
N. R.; Thompson, M. A.; Twieg, R. J.; Moerner, W. E. Azido push-pull
fluorogens photoactivate to produce bright fluorescent labels. J. Phys.
Chem. B 2010, 114, 14157.
(22) Ankenbruck, N.; Courtney, T.; Naro, Y.; Deiters, A.
Optochemical Control of Biological Processes in Cells and Animals.
Angew. Chem. Int. Ed. 2018, 57, 2768.
(23) Lin, V. S.; Lippert, A. R.; Chang, C. J. Azide-based fluorescent
probes: imaging hydrogen sulfide in living systems. Methods Enzymol.
2015, 554, 63.
ACS Paragon Plus Environment