RSC Advances
Paper
it can be concluded that the cycloaddition would proceed
favorably near the catalyst surface with “spot-activated cobalt”,
allowing only high-affinity alkynes to approach the metal center
and thus high selectivity can be realized for cycloadditions. This
strategy also provided the potentials for the development of
template and precise catalysts.
Org. Lett., 2017, 19, 2913; (e) D. Bhatt, H. Chowdhury and
A. Goswami, Org. Lett., 2017, 19, 3350; (f) D. Brenna,
M. Villa, T. Gieshoff, F. Fischer, M. Hapke and
A. J. Wangelin, Angew. Chem., Int. Ed., 2017, 56, 8451.
3 (a) R. Shintani, C. Takagi, T. Ito, M. Naito and K. Nozaki,
Angew. Chem., Int. Ed., 2015, 54, 1616; (b) R. P. Kaiser,
´ ˇ
´
F. Hessler, J. Mosinger, I. Cısarova and M. Kotora, Chem.–
Eur. J., 2015, 21, 13577.
Conclusions
4 (a) R. Karmakar, S. Y. Yun, J. Chen, Y. Xia and D. Lee, Angew.
Chem., Int. Ed., 2015, 54, 6582; (b) J. Jacquet, A. Auvinet,
A. K. Mandadapu, M. Haddad, V. Ratovelomanana-Vidal
and V. Micheleta, Adv. Synth. Catal., 2015, 357, 1387; (c)
H. Chowdhury and A. Goswami, Org. Biomol. Chem., 2017,
15, 5824.
5 P. J. Parsons, D. R. Jones, A. C. Padgham, L. A. T. Allen,
C. S. Penkett, R. A. Green and A. J. P. White, Chem.–Eur. J.,
2016, 22, 3981.
6 G. Onodera, Y. Shimizu, J. Kimura, J. Kobayashi, Y. Ebihara,
K. Kondo, K. Sakata and R. Takeuchi, J. Am. Chem. Soc., 2012,
134, 10515.
7 A. Thakur and J. Louie, Acc. Chem. Res., 2015, 48, 2354.
8 (a) P.-Z. Li, X.-J. Wang, S. Y. Tan, C. Yang, H. Chen, J. Liu,
R. Zou and Y. Zhao, Angew. Chem., Int. Ed., 2015, 54,
12748; (b) H. Deng, S. Grunder, K. E. Cordova, C. Valente,
In conclusion, a 3D Co(II)-based MOF was designed and
prepared, showing serial window-sharing octahedral cages and
1D hexagonal channels. The activated Co-MOF-10 has high
affinity toward acetylene and serves as a heterogeneous and
recoverable catalyst for [2 + 2 + 2] cycloaddition to afford highly
substituted benzenes with remarkable efficiency, selectivity,
and functional group tolerance. Notably, this transformation is
also compatible with aromatic alkynes with uorine substituent
and thus provided products with potential pharmaceutical
activity. Co-MOF-10 with high alkyne affinity and “activated
cobalt” can preclude the fast approach of sterically hindered
substrates to the active sites, which may well account for the
selectivity of achieved products. The results witnessed the great
success of Co-MOF-10 as catalyst for annulation and encouraged
further developments of new MOFs catalysts for expedient
synthetic transformations.
´
H. Furukawa, M. Hmadeh, F. Gandara, A. C. Whalley,
Z. Liu, S. Asahina, H. Kazumori, M. O'Keeffe, O. Terasaki,
J. F. Stoddart and O. M. Yaghi, Science, 2012, 336, 1018; (c)
J.-S. Qin, D.-Y. Du, W. Guan, X.-J. Bo, Y.-F. Li, L.-P. Guo,
Z.-M. Su, Y.-Y. Wang, Y.-Q. Lan and H.-C. Zhou, J. Am.
Chem. Soc., 2015, 137, 7169; (d) A. Schoedel, M. Li,
D. A. Schoedel, M. Li, D. Li, M. O'Keeffe and O. M. Yaghi,
Chem. Rev., 2016, 116, 12466; (e) Y. Long, L. Xiao, Q. Cao,
X. Shi and Y. Wang, Chem. Commun., 2017, 53, 10831; (f)
Y.-S. Wei, X.-P. Hu, Z. Han, X.-Y. Dong, S.-Q. Zang and
T. C. W. Mak, J. Am. Chem. Soc., 2017, 139, 3505.
Conflicts of interest
There are no conicts to declare.
Acknowledgements
We are grateful to the support from the National Natural Science
Foundation of China (21471134, 21571158, and 21701148).
9 Y. He, W. Zhou, G. Qian and B. Chen, Chem. Soc. Rev., 2014,
43, 5657.
Notes and references
¨
1 (a) S. Perreault and T. Rovis, Chem. Soc. Rev., 2009, 38, 3149; 10 H. Zheng, Y. Zhang, L. Liu, W. Wan, P. Guo, A. M. Nystrom
(b) H. Pellissier and H. Clavier, Chem. Rev., 2014, 114, 2775; and X. Zou, J. Am. Chem. Soc., 2016, 138, 962.
(c) D. M. Kuznetsov, O. A. Mukhina and A. G. Kutateladze, 11 (a) W.-Y. Gao, H. Wu, K. Leng, Y. Sun and S. Ma, Angew.
Angew. Chem., Int. Ed., 2016, 55, 6988; (d) G. M. Torres,
J. S. Quesnel, D. Bijou and B. A. Arndtsen, J. Am. Chem.
Soc., 2016, 138, 7315; (e) C. Ni and X. Tong, J. Am. Chem.
Soc., 2016, 138, 7872; (f) Y. Deng, L. A. Massey,
Chem., Int. Ed., 2016, 55, 5472; (b) J. Liu, L. Chen, H. Cui,
J. Zhang, L. Zhang and C.-Y. Su, Chem. Soc. Rev., 2014, 43,
6011; (c) X.-L. Lv, K. Wang, B. Wang, J. Su, X. Zou, Y. Xie,
J.-R. Li and H.-C. Zhou, J. Am. Chem. Soc., 2017, 139, 211;
(d) Y.-B. Huang, J. Liang, X.-S. Wang and R. Cao, Chem.
Soc. Rev., 2017, 46, 126; (e) J. Liang, R.-P. Chen,
X.-Y. Wang, T.-T. Liu, X.-S. Wang, Y.-B. Huang and R. Cao,
Chem. Sci., 2017, 8, 1570.
˜
´
Y. R. Nunez, H. Arman and M. P. Doyle, Angew. Chem., Int.
Ed., 2017, 56, 12292; (g) R. L. Sahani and R.-S. Liu, Angew.
Chem., Int. Ed., 2017, 56, 12736; (h) S. C. Schmid,
I. A. Guzei and J. M. Schomaker, Angew. Chem., Int. Ed.,
2017, 56, 12229; (i) J.-L. Shih, S. Jansone-Popova, C. Huynh 12 (a) M. Du, C.-P. Li, C.-S. Liu and S.-M. Fang, Coord. Chem.
and J. A. May, Chem. Sci., 2017, 8, 7132; (j) L. Shen,
K. Zhao, K. Doitomi, R. Ganguly, Y.-X. Li, Z.-L. Shen,
H. Hirao and T.-P. Loh, J. Am. Chem. Soc., 2017, 139, 13570.
2 (a) M. R. Shaaban, R. El-Sayed and A. H. M. Elwahy,
Tetrahedron, 2011, 67, 6095; (b) S. Kotha, E. Brahmachary
and K. Lahiri, Eur. J. Org. Chem., 2005, 4741; (c)
Rev., 2013, 257, 1282; (b) M. Du, C.-P. Li, M. Chen,
Z.-W. Ge, X. Wang, L. Wang and C.-S. Liu, J. Am. Chem.
Soc., 2014, 136, 10906; (c) M. Du, X. Wang, M. Chen,
C.-P. Li, J.-Y. Tian, Z.-W. Wang and C.-S. Liu, Chem.–Eur. J.,
2015, 21, 9713; (d) D.-M. Chen, J.-Y. Tian, C.-S. Liu and
M. Du, Chem. Commun., 2016, 52, 8413; (e) D.-M. Chen,
J.-Y. Tian, M. Chen, C.-S. Liu and M. Du, ACS Appl. Mater.
Interfaces, 2016, 8, 18043.
´
H. F. Jonsson, S. Evjen and A. Fiksdahl, Org. Lett., 2017, 19,
2202; (d) H. Ueda, K. Masutomi, Y. Shibata and K. Tanaka,
4898 | RSC Adv., 2018, 8, 4895–4899
This journal is © The Royal Society of Chemistry 2018