4
Feng et al. Sci China Chem Februray (2016) Vol.59 No.2
Soc Rev, 2011, 40: 102–113; b) Teplý F. Collect Czech Chem
Commun, 2011, 76: 859–917; c) Shi L, Xia W. Chem Soc Rev, 2012,
7
8
Nguyen JD, D’Amato EM, Narayanam JM, Stephenson CR. Nat
Chem, 2012, 4: 854–859
4
6
2
1: 7687–7697; d) Xuan J, Xiao WJ. Angew Chem Int Ed, 2012, 51:
828-6838; e) Prier CK, Rankic DA, MacMillan DW. Chem Rev,
013, 113: 5322–5363; f) Ravelli D, Fagnoni M, Albini A. Chem Soc
For selected reviews, see: a) Wei Y, Shi M. Acc Chem Res, 2010, 43:
1005–1018; b) Dai LX, Hou XL. Chiral Ferrocenes in Asymmetric
Catalysis: Synthesis and Applications. Weinheim: Wiley-VCH, 2010;
c) List B. Asymmetric Organocatalysis. Heidlberg: Springer, 2010; d)
Denmark SE, Beutner GL. Angew Chem Int Ed, 2008, 47: 1560–
Rev, 2013, 42: 97–113; g) Xi Y, Yi H, Lei A. Org Biomol Chem,
2
1
013, 11: 2387–2403; h) Schultz DM, Yoon TP. Science, 2014, 343:
239176
1
638; f) Fu GC. Acc Chem Res, 2006, 39: 853–860
5
For reviews and books on dual catalysis merging visible light
photocatalysis with other catalytic manners, see: a) Hopkinson MN,
SahooB, Li J, Glorius F. Chem Eur J, 2014, 20: 3874–3886; b)
Zeitler K, Neumann M. Synergistic visible light photoredox catalysis.
In: König B, Ed. Chemical Photocatalysis. Germany: Walter de
Gruyter, 2013. 151–168. For recent examples with palladium
catalysis, see: c) Xuan J, Zeng TT, Feng ZJ, Deng QH, Chen JR, Lu
LQ, Xiao WJ. Angew Chem Int Ed, 2015, 54: 1625–1628; d) Lang
SB, O’Nele K, Tunge JA. J Am Chem Soc, 2014, 136: 13606–13609.
With gold catalysis, see: e) Hopkinson MN, Sahoo B, Glorius F. Adv
Synth Catal, 2014, 356: 2794–2800; f) Shu XZ, Zhang M, He Y, Frei
H, Toste FD. J Am Chem Soc, 2014, 136: 5844–5847. With nickel
catalysis, see: g) Xuan J, Zeng TT, Chen JR, Lu LQ, Xiao WJ. Chem
Eur J, 2015, 21: 4962–4965. With others, see: h) Feng ZJ, Xuan J,
Xia XD, Ding W, Guo W, Chen JR, Zou YQ, Lu LQ, Xiao WJ. Org
Biomol Chem, 2014, 12: 2037–2040; i) Bergonzini G, Schindler CS,
Wallentin CJ, Jacobsen EN, Stephenson CRJ. Chem Sci, 2014, 5:
9
a) Carnes ME, Collins MS, Lindquist NR, Percástegui EG, Pluth
MD, Johnson DW. Chem Commun, 2014, 50: 73–75; b) Patel K,
Miljanić OS, Stoddart JF. Chem Commun, 2008, 44: 1853–1855; c)
de Sousa AL, Resck IS. J Braz Chem Soc, 2002, 13: 233–237; d)
Tipson RS, Clapp MA, Cretcher LH. J Org Chem, 1947, 12: 133–138
10 For detailed condition optimization, including the evaluation of pho-
tocatalysts, solvents, light sources and bases, see Supporting Inform-
ation
11 General Procedure: In a 10 mL dry flask equipped with magnetic bar
was charged with 1 (0.5 mmol, 1.0 equiv.) and Ir(bpy) (dtbbpy)PF (2
2
6
mol%), 5 (0.75 mmol, 1.5 equiv.), KI (20 mol%), NaCO
2
CF
3
(1.0
mmol, 2.0 equiv.) and MeCN (5 mL). The mixture was degassed via
freeze-pump-thaw method (3 times) and then stirred under the
irradiation of 7 W blue LEDs at room temperature for 12 h. The
resultant mixture was filtered under vacuum to remove the solid. The
filtrate was purified by flash chromatography on silica gel (petroleum
ether/DCM=10:1) to afford the desired product 3. Analytical data of
1
12–116
1-allyl-2-phenyl-1,2,3,4-tetrahydroisoquinoline (3a): light yellow oil;
H NMR (600 MHz, CDCl ) (ppm) 7.18 (m, 6H), 6.89 (d, J=8.2
3
1
6
a) Zou YQ, Lu LQ, Fu L, Chang NJ, Rong J, Chen JR, Xiao WJ.
Angew Chem Int Ed, 2011, 50: 7171–7175; b) Xuan J, Cheng Y, An
J, Lu LQ, Zhang XX, Xiao WJ. Chem Commun, 2011, 47: 8337–
Hz, 2H), 6.73 (t, J=7.1 Hz, 1H), 5.89–5.82 (m, 1H), 5.06 (t, J=13.1
Hz, 2H), 4.74 (t, J=6.7 Hz, 1H), 3.72–3.52 (m, 2H), 3.08–2.96 (m,
1H), 2.88 (dt, J=15.7, 5.2 Hz, 1H), 2.78–2.65 (m, 1H), 2.49 (dt,
8
339; c) Zou YQ, Chen JR, Liu XP, Lu LQ, Davis RL, Jørgensen
1
3
KA, Xiao WJ. Angew Chem Int Ed, 2012, 51: 784–788; d) Xuan J,
Feng ZJ, Duan SW, Xiao WJ. RSC Adv, 2012, 2: 4065–4068; e)
Xuan J, Xia XD, Zeng TT, Feng ZJ, Chen JR, Lu LQ, Xiao WJ.
Angew Chem Int Ed, 2014, 53: 5653–5656, and Refs. [3c,3g,3k]
3
J=14.1, 7.2 Hz, 1H); C NMR (100 MHz, CDCl ) (ppm) 149.4,
138.1, 135.6, 134.9, 129.2, 128.5, 127.3, 126.5, 125.7, 117.2, 117.0,
+
113.8, 59.3, 41.9, 40.9, 27.4; HRMS: m/z (ESI) calculated [M+H]
250.1590, measured 250.1594.