R.M.D. Nunes et al. / Journal of Molecular Catalysis A: Chemical 333 (2010) 1–5
5
This research was carried out under the projects
SFRH/BD/16966/2004, POCI/EQU/58252/2004, POCI/FEDER/2010
and, approved by the Funda c¸ ão para a Ciência e a Tecnologia (FCT)
and co-supported by FEDER (POFC/COMPETE).
References
[
[
[
1] P. Maki-Arvela, J. Hajek, T. Salmi, D.Y. Murzin, Appl. Catal. A 292 (2005)
–49.
2] M. Steffan, F. Klasovsk, J. Arras, C. Roth, J. Radnik, H. Hofmeister, P. Claus, Adv.
Synth. Catal. 350 (2008) 1337–1348.
1
3] E.J. Ras, S. Maisuls, P. Haesakkers, G.J. Gruter, G. Rothenberg, Adv. Synth. Catal.
351 (2009) 3175–3185.
[
[
[
4] N.R. Shiju, V.V. Guliants, Appl. Catal. A 356 (2009) 1–17.
5] J.R. Hanson, Nat. Prod. Rep. 24 (2007) 1342–1349.
6] C. Djerassi, Steroid Reactions An Outline for Organic Chemists, Holden-Day Inc.,
San Francisco, 1963.
[
7] R.L. Augustine, Steroid Hydrogenation, in: J. Fried, J.A. Edwards (Eds.), Organic
Reactions in Steroid Chemistry, Van Nostrand Reinhold Company, New York,
1972, pp. 111–144.
[
[
8] R. Skoda-Foldes, L. Kollar, Chem. Rev. 103 (2003) 4095–4129.
9] A. Zsigmond, R. Madacsi, F. Notheisz, E. Mernyak, F. Joo, React. Kinet. Catal. Lett.
87 (2006) 297–304.
[
[
10] F.A. Kang, N. Jain, Z.H. Sui, Tetrahedron Lett. 47 (2006) 9021–9024.
11] R.A. Shenvi, C.A. Guerrero, J. Shi, C.C. Li, P.S. Baran, J. Am. Chem. Soc. 130 (2008)
Fig. 2. Activity of the 3Pt/TiO2 catalyst after 5 subsequent runs.
7241–7243.
[
12] K. Szori, K. Balazsik, K. Felfoldi, I. Bucsi, S. Cserenyi, G. Szollosi, E. Vass, M. Hollosi,
M. Bartok, J. Mol. Catal. A: Chem. 294 (2008) 14–19.
studies were also carried out in the catalytic hydrogenation of sub-
[
13] N.G. Aher, R.G. Gonnade, V.S. Pore, Synlett (2009) 2005–2009.
strate 2 and similar results were obtained.
[14] A. Marcos-Escribano, F.A. Bermejo, A.L. Bonde-Larsen, J.I. Retuerto, Tetrahedron
5 (2009) 8493–8496.
6
[
15] R.M.D. Nunes, T.F. Fernandes, G.A. Carvalho, E.N. dos Santos, M.J.S.M. Moreno,
A.P. Piedade, M.M. Pereira, J. Mol. Catal. A: Chem. 307 (2009) 115–120.
16] A.M.H. Brodie, V.C.O. Njar, Steroids 65 (2000) 171–179.
17] V. Gertosio, C.C. Santini, J.M. Basset, F. Bayard, J. Buendia, M. Vivat, J. Mol. Catal.
A: Chem. 142 (1999) 141–145.
4
. Conclusions
[
[
The photochemical deposition method proved to be quite sim-
ple and effective to produce TiO2 supported Pt nanoparticles in
the range of 4–5 nm, depending on the metal load present. The
catalytic materials showed high activities and selectivities for the
hydrogenation of ␣,-unsaturated oxosteroids in extremely mild
[
18] Y.A. Ryndin, C.C. Santini, D. Prat, J.M. Basset, J. Catal. 190 (2000) 364–373.
[19] K. Felfoldi, I. Bucsi, B. Kazi, M. Bartok, React. Kinet. Catal. Lett. 86 (2005)
23–329.
20] A.L. Wilds, J.A. Johnson, R.E. Sutton, J. Am. Chem. Soc. 72 (1950) 5524–
529.
3
[
5
◦
conditions (30 C and 5 bar of hydrogen). The activity and selectivity
[21] S. Nishimura, M. Shimahara, M. Shiota, Chem. Ind. (1966) 1796–1797.
[22] S. Nishimura, M. Shimahara, M. Shiota, J. Org. Chem. 31 (1966) 2394–2395.
[
[
of these catalysts are pressure independent, in the studied interval.
However, the regioselectivity can be modulated by the tempera-
ture of the catalytic process, i.e. it was possible to selectively reduce
23] P.J. McQuillin, W.O. Ord, P.L. Simpson, J. Chem. Soc. (1963) 5996–6003.
24] J.L. Figueiredo, F. Ramôa, Catálise Heterogénea, Funda c¸ ão Calouste Gullbenkian,
Lisboa, 1989.
4
16
the less hindered ꢀ or ꢀ double bonds at almost room tempera-
[25] R. Yashin, G. Rosenkranz, C. Djerassi, J. Am. Chem. Soc. 73 (1951) 4654–
4657.
◦
◦
ture (30 C) but higher temperatures (100 C) allowed the reduction
of the more hindered ꢀ5 double bond and/or the carbonyl
group.
The ␣-diastereoselectivity was outstanding, being comparable
to the homogeneous process. Such a result must be emphasized as,
according to the literature, surface unmodified heterogeneous cat-
alysts provide low diastereoselectivities, with broad predominance
of the -isomer.
[
[
26] C. Djerassi, R. Yashin, G. Rosenkranz, J. Am. Chem. Soc. 74 (1952) 422–424.
27] N. Ravasio, M. Rossi, J. Org. Chem. 56 (1991) 4329–4333.
[28] R.M.D. Nunes, A.F. Peixoto, A.R. Axet, M.A. Pereira, M.J. Moreno, L. Kollar, C.
Claver, S. Castillon, J. Mol. Catal. A: Chem. 247 (2006) 275–282.
[
[
29] A. Mills, R.H. Davies, D. Worsley, Chem. Soc. Rev. 22 (1993) 417–425.
30] J.M. Herrmann, Catal. Today 53 (1999) 115–129.
[31] S. Dutta, S.A. Parsons, C. Bhattacharjee, P. Jarvis, S. Datta, S. Bandyopadhyay,
Chem. Eng. J. 155 (2009) 674–679.
[
[
32] C.G. Silva, J.L. Faria, J. Mol. Catal. A: Chem. 305 (2009) 147–154.
33] M. Goel, J.M. Chovelon, C. Ferronato, R. Bayard, T.R. Sreekrishnan, J. Photochem.
Photobiol. B 98 (2010) 1–6.
This new TiO2 supported platinum catalyst has a high potential
for industrial application as it can be reused at least 5 cycles without
loosing activity or selectivity.
[
[
34] S.J. Tauster, Acc. Chem. Res. 20 (1987) 389–394.
35] Z. Zhang, C.C. Wang, R. Zakaria, J.Y. Ying, J. Phys. Chem.
0871–10878.
36] I.I. Roslov, D. Bartak, V.V. Gorbunova, T.B. Boitsova, Russ. J. Gen. Chem. 79 (2009)
11–716.
B 102 (1998)
1
[
7
Acknowledgments
[
[
37] M.I. Litter, Appl. Catal. B 23 (1999) 89–114.
38] H. Burrows, M.M. Pereira, Síntese e estrutura, uma abordagem prática, Escolar
Editora, Lisboa, 2006.
The authors would like to acknowledge Funda c¸ ão para a Ciên-
cia e Tecnologia PTDC/QUI/66015/2006 and SFRH/BD/24005/2005
[39] N. Ikeo, Y. Iijima, N. Nimura, M. Sigematsu, T. Tazawa, S. Matsumoto, K. Kojima,
Y. Nagasawa, Handbook of X-ray Photoelectron Spectroscopy, JEOL, 1991.
(
RMDN) for financial support.