10.1002/anie.201801592
Angewandte Chemie International Edition
COMMUNICATION
119; (d) M. A. Rude, T. S. Baron, S. Brubaker, M. Alibhai, S. B. Del
Cardayre, A. Schirmer, Appl. Environ. Microbiol. 2011, 77, 1718-1727.
(a) Y. Wang, D. Lan, R. Durrani, F. Hollmann, Curr. Opin. Chem. Biol.
2017, 37, 1-9; (b) A. Olmedo, C. Aranda, J. C. del Río, J. Kiebist, K.
Scheibner, A. T. Martínez, A. Gutiérrez, Angew. Chem. Int. Ed. 2016, 55,
12248-12251.
degradation. Anyhow, the problem of enzyme stability can be
solved through protein engineering[25] or the use of in-situ H2O2
formation to control the H2O2 concentration[26]. We also observed
that the TONs increased to 2733, 4910, and 730 for the lengthier
reactions of styrene epoxidation, thioanisole sulfoxidation, and
ethylbenzene hydroxylation at 4 °C. This demonstrated that the
catalytic efficiency of the system could be further improved by
enhancing the stability of the enzyme.
[6]
[7] (a) P. C. Cirino, F. H. Arnold, Angew. Chem. Int. Ed. 2003, 42, 3299-3301;
(b) S. Kumar, C. Chen, D. Waxman, J. Biol. Chem 2005, 280, 19569-
19575; (c) R. K. Behera, S. Goyal, S. Mazumdar, J. Inorg. Biochem. 2010,
104, 1185-1194.
In summary, we have constructed a unique approach for
generating P450BM3 peroxygenase activity through the use of
exogenous DFSMs. Our system achieved the best peroxygenase
activity for the epoxidation of styrene, sulfoxidation of thioanisole,
and hydroxylation of ethylbenzene among those P450-H2O2
system reported to date.[7-9,10b,14] We believe that this system can
be further improved by optimizing the structure of the DFSMs in
combination with rational design of the enzyme. Considering that
quite a few of the cytochrome P450s have a large and vacant
substrate pocket, such optimization would offer further avenues
for the development of various P450 peroxygenase systems. The
present study emphasizes how the modification of an enzyme’s
activity and function through direct chemical intervention can
influence its catalytic process. Further investigations of the
detailed activation mechanisms involved in this system are now
in progress in our laboratory.
[8]
(a) O. Shoji, T. Fujishiro, H. Nakajima, M. Kim, S. Nagano, Y. Shiro, Y.
Watanabe, Angew. Chem. Int. Ed. 2007, 46, 3656-3659; (b) H. Onoda,
O. Shoji, Y. Watanabe, Dalton. Trans. 2015, 44, 15316-15323.
O. Shoji, Y. Watanabe, J. Biol. Inorg. Chem. 2014, 19, 529-539.
[9]
[10] (a) O. Shoji, Y. Watanabe, Metallomics 2011, 3, 379-388; (b) O. Shoji, T.
Fujishiro, K. Nishio, Y. Kano, H. Kimoto, S. C. Chien, H. Onoda, A.
Muramatsu, S. Tanaka, A. Hori, Catal. Sci. Technol. 2016, 6, 5806-5811.
[11] Z. Cong, O. Shoji, C. Kasai, N. Kawakami, H. Sugimoto, Y. Shiro, Y.
Watanabe, ACS Catal. 2015, 5, 150-159.
[12] O. Shoji, S. Yanagisawa, J. K. Stanfield, K. Suzuki, Z. Cong, H. Sugimoto,
Y. Shiro, Y. Watanabe, Angew. Chem. Int. Ed. 2017, 56, 10324-10329.
[13] M. Gajhede, D. J. Schuller, A. Henriksen, A. T. Smith, T. L. Poulos, Nat.
Struct. Biol. 1997, 4, 1032-1038.
[14] C. H. Hsieh, T. M. Makris, Biochem. Biophys. Res. Commun. 2016, 476,
462-466.
[15] D. C. Haines, B. Chen, D. R. Tomchick, M. Bondlela, A. Hegde, M.
Machius, J. A. Peterson, Biochemistry 2008, 47, 3662–3670.
[16] M. Alcalde, E. T. Farinas, F. H. Arnold, J. Biomol. Screen. 2004, 9, 141-
146.
[17] It is reported that the full-length F87A has an apparent Km for H2O2 of
~18mM,[18] which is consistent with our findings using the heme domain
of F87A (data not shown).
Acknowledgements
[18] (a) Q. S. Li, J. Ogawa, S. Shimizu, Biochem. Biophys. Res. Commun.
2001, 280, 1258-1261; (b) P. C. Cirino, F. H. Arnold, Adv. Synth. Catal.
2002, 344, 932-937.
This work was supported by NSFC (No. 21778060) and
Shandong Provincial Key Laboratory of Synthetic Biology (No.
SPKLSB-2017-02). We are grateful to Dr. Yujin Cao at Qingdao
Institute of Bioenergy and Bioprocess Technology, Chinese
Academy of Sciences for his kind gift of the plasmid for expression
of P450BM3.
[19]
M. Noble, L. Quaroni, G. D. Chumanov, K. Turner, S. Chapman, R.
Hanzlik, A. Munro, Biochemistry 1998, 37, 15799-15807.
[20] K. S. Rabe, M. Erkelenz, K. Kiko, C. M. Niemeyer, J. Biotech. 2010, 5,
891-899.
[21] D. C. Haines, D. R. Tomchick, M. Machius, J. A. Peterson, Biochemistry
2001, 40, 13456-13465.
[22] Q.-S. Li, J. Ogawa, R. D. Schmid, S. Shimizu, FEBS. Lett. 2001, 508,
249-252.
Conflict of interest
[23] (a) C. Zhang, P.-X. Liu, L.-Y. Huang, S.-P. Wei, L. Wang, S.-Y. Yang, X.-
Q. Yu, L. Pu, Q. Wang, Chem. Eur. J. 2016, 22, 10969-10975; (b) S.
Munday, S. Dezvarei, S. G. Bell, ChemcatChem 2016, 8, 2789-2796; (c)
W.-C. Huang, P. M. Cullis, E. L. Raven, G. C. K. Roberts, Mettallomics
2011, 3, 410-416.
The authors declare no conflict of interest.
Keywords: biocatalysis • peroxygenase • cytochrome P450s •
protein engineerings • oxidoreductases
[24] (a) A. Karich, K. Scheibner, R. Ullrich, M. Hofrichter, J. Mol. Catal. B-
Enzym. 2016, 134, 238-246; (b) O. Salazar, P. C. Cirino, F. H. Arnold,
Chembiochem 2003, 4, 891-893.
[1]
(a) R. Bernhardt, V. B. Urlacher, Appl. Microbiol. Biotech. 2014, 98, 6185-
6203; (b) F. P. Guengerich, J. Biol. Chem. 2013, 288, 17065-17073; (c)
R. Fasan, ACS Catal 2012, 2, 647–666; (d) P. R. O. D. Montellano, Chem.
Rev. 2010, 110, 932-948; (e) C. J. Whitehouse, S. G. Bell, L.-L. Wong,
Chem. Soc. Rev 2012, 41, 1218-1260.
[25] A. Vidal-Limόn, S. Águila, M. Ayala, C. V. Batista, R. Vazquez-Duhalt, J.
Inorg. Biochem. 2013, 122, 18-26.
[26] (a) W. Zhang, B. O. Burek, E. Fernάndez-Fueyo, M. Alcalde, J. Z. Bloh,
F. Hollmann, Angew. Chem. Int. Ed. 2017, 56, 15451-15455; (b) W.
Zhang, E. Fernάndez-Fueyo, Y. Ni, M. van Schie, J. Gacs, R. Renirie, R.
Wever, F. G. Mutti, D. Rother, M. Alcalde, F. Hollmann, Nat. Catal. 2018,
1, 55-62.
[2]
[3]
D. Holtmann, M. W. Fraaije, I. W. Arends, D. J. Opperman, F. Hollmann,
Chem. Commun. 2014, 50, 13180-13200.
(a) H. Joo, Z. Lin, F. H. Arnold, Nature 1999, 399, 670-673; (b) E. G.
Hrycay, S. M. Bandiera, Arch. Biochem. Biophys. 2012, 522, 71-89.
[4] (a) K. Piontek, E. Strittmatter, R. Ullrich, G. Gröbe, M. J. Pecyna, M. Kluge,
K. Scheibner, M. Hofrichter, D. A. Plattner, J. Biol. Chem. 2013, 288,
34767-34776; (b) K. Kuhnel, W. Blankenfeldt, J. Terner, I. Schlichting, J.
Biol. Chem. 2006, 281, 23990-23998.
[5]
(a) I. Matsunaga, N. Yokotani, O. Gotoh, E. Kusunose, M. Yamada, K.
Ichihara, J. Biol. Chem. 1997, 272, 23592-23596; (b) I. Matsunaga, A.
Ueda, T. Sumimoto, K. Ichihara, M. Ayata, H. Ogura, Arch. Biochem.
Biophys. 2001, 394, 45-53; (c) M. Girhard, S. Schuster, M. Dietrich, P.
Dürre, V. B. Urlacher, Biochem. Biophys. Res. Commun. 2007, 362, 114-
This article is protected by copyright. All rights reserved.