Page 9 of 11
Langmuir
1
2
3
4
5
6
7
8
9
lysts and 3.9 wt % PVA, and then sintered at 500 oC for 2 h.
Photocatalytic Activity for Organic Degradation in Water. ACS
Catal. 2014, 4, 32733280.
Third, the film glass was cut into several parts. Each part
had an exposed area of 1 × 1 cm2. Measurements were per-
formed in 0.5M NaClO4 (pH 7) at 10 mV/s, using a plati-
num gauze as counter electrode, and an Ag/AgCl elec-
trode as reference electrode. Instrument was a CHI660E
Electrochemical Station (Chenghua, Shanghai), attached
with a 500 W Xenon lamp and a 320 nm cut-off filter.
(7) Cong, S.; Xu, Y. Explaining the High Photocatalytic Activity of
a Mixed Phase TiO2: A Combined Effect of O2 and Crystallinity. J.
Phys. Chem. C 2011, 115, 2116121168.
(8) Luo, B.; Li, Z.; Xu, Y. The Positive Effect of Anatase and Rutile
on the Brookite-Photocatalyzed Degradation of Phenol. RSC
Advances 2015, 5, 105999106004.
(9) Li, Z.; Liu, R.; Xu, Y. Larger Effect of Sintering Temperature
Than Particle Size on the Photocatalytic Activity of Anatase TiO2.
J. Phys. Chem. C 2013, 117, 2436024367.
(10) Emeline, A. V.; Zhang, X.; Jin, M.; Murakami, T.; Fujishima, A.
Application of a "Black Body" Like Reactor forMeasurements of
Quantum Yields of Photochemical Reactions in Heterogeneous
Systems. J. Phys. Chem. B 2006, 110, 74097413.
(11) Sun, Q.; Leng, W.; Li, Z.; Xu, Y. Effect of Surface Fe2O3
Clusters on the Photocatalytic Activity of TiO2 for Phenol
Degradation in Water. J. Hazard. Mater. 2012, 229, 224232.
(12) Wan, L.; Sheng, J.; Chen, H.; Xu, Y. Different Recycle Behavior
of Cu2+ and Fe3+ Ions for Phenol Photodegradation over TiO2 and
WO3. J. Hazard. Mater. 2013, 262, 114120.
(13) Khnayzer, R. S.; Mara, M. W.; Huang, J.; Shelby, M. L.; Chen,
L. X.; Castellano, F. N. Structure and Activity of Photochemically
Deposited "CoPi" Oxygen Evolving Catalyst on Titania. ACS Catal.
2012, 2, 21502160.
(14) Zhang, X.; Xiong, X.; Wan, L.; Xu, Y. Effect of a Co-Based
Oxygen-Evolving Catalyst on TiO2-Photocatalyzed Organic
Oxidation. Langmuir 2017, 33, 81658173.
(15) Zhao, Q.; Yan, Z.; Chen, C.; Chen, J. Spinels: Controlled
Preparation, Oxygen Reduction/Evolution Reaction Application,
and Beyond. Chem. Rev. 2017, 117, 1012110211.
(16) Indra, A.; Menezes, P. W.; Sahraie, N. R.; Bergmann, A.; Das,
C.; Tallarida, M.; Schmeisser, D.; Strasser, P.; Driess, M.
Unification of Catalytic Water Oxidation and Oxygen Reduction
Reactions: Amorphous Beat Crystalline Cobalt Iron Oxides. J. Am.
Chem. Soc. 2014, 136, 1753017536.
(17) Zuo, X.; Fei, P.; Hu, C.; Su, B.; Lei, Z. Preparation of Magnetic
TiO2/CoFe2O4 Composite Photocatalytic Nanomaterial. Chinese J.
Inorg. Chem. 2009, 25, 12331237.
(18) Mourão, H. A. J. L.; Malagutti, A. R.; Ribeiro, C. Synthesis of
TiO2-Coated CoFe2O4 Photocatalysts Applied to the
Photodegradation of Atrazine and Rhodamine B in Water.
Applied Catal. A 2010, 382, 284292.
(19) Zhang, X.; Sun, D.; Han, Y.; Wang, J. Preparation and Sunlight
Photocatalytic Properties of TiO2-CoFe2O4 Magnetic Composite
Materials. Chinese J. Inorg. Chem. 2011, 27, 13731377.
(20) Li, C.; Wang, J.; Wang, B.; Gong, J.; Lin, Z. A Novel
Magnetically Separable TiO2/CoFe2O4 Nanofiber with High
Photocatalytic Activity under UV–vis Light. Mater. Res. Bull. 2012,
47, 333337.
(21) Sathishkumar, P.; Mangalaraja, R. V.; Anandan, S.;
Ashokkumar, M. CoFe2O4/TiO2 Nanocatalysts for the
Photocatalytic Degradation of Reactive Red 120 in Aqueous
Solutions in the Presence and Absence of Electron Acceptors.
Chem. Eng. J. 2013, 220, 302310.
(22) Sun, J.; Fu, Y.; Xiong, P.; Sun, X.; Xu, B.; Wang, X. A
Magnetically Separable P25/CoFe2O4/Graphene Catalyst with
Enhanced Adsorption Capacity and Visible-Light-Driven
Photocatalytic Activity. RSC Advances 2013, 3, 2249022497.
(23) Haw, C.; Chiu, W.; Abdul Rahman, S.; Khiew, P.; Radiman, S.;
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
■ ASSOCIATED CONTENT
Supporting Information. Tables of solid parameters in
Mӧssbauer, N2 adsorption, O2 reduction onset potentials,
XRD patterns, integrated data, Tauc plots, SEM images, pho-
tographs, Mӧssbauer plots, XPS spectra, N2 adsorption iso-
therm, H2O2 decomposition, magnetization curves, dark LSV
curves for IR compensation and carbon rod counter electrode,
LSV curves for water oxidation, four parallel LSV curves for
phenol oxidation, OCP data fitting, XRD patterns and phenol
degradation on calcined samples. This material is available
■ AUTHOR INFORMATION
Corresponding Author
Author Contributions
The manuscript was written through contributions of all au-
thors.
Notes
The authors declare no competing financial interest.
■ ACKNOWLEDGMENT
This work was supported by the Funds for Creative Research
Group of NSFC (No. 21621005). We thank Prof. R. Liu, Dr. Q.
Xiong, and group members in instrument use and discussion.
■ REFERENCES
(1) Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W.
Environmental Application of Semiconductor Photocatalysis.
Chem. Rev. 1995, 95, 6996.
(2) Kumar, S. G.; Devi, L. G. Review on Modified TiO2
Photocatalysis under UV/Visible Light: Selected Results and
Related Mechanisms on Interfacial Charge Carrier Transfer
Dynamics. J. Phys. Chem. A 2011, 115, 1321113241.
(3) Carp, O.; Huisman, C. L.; Reller, A. Photoinduced Reactivity of
Titanium Dioxide. Prog. Solid State Chem. 2004, 32, 33177.
(4) Ryu, J.; Choi, W. Substrate-Specific Photocatalytic Activities of
TiO2 and Multiactivity Test for Water Treatment Application.
Environ. Sci. Tehcnol. 2008, 42, 294300.
(5) Sun, Q.; Xu, Y. Evaluating Intrinsic Photocatalytic Activities of
Anatase and Rutile TiO2 for Organic Degradation in Water. J. Phys.
Chem. C 2010, 114, 1891118918.
(6) Li, Z.; Cong, S.; Xu, Y. Brookite vs Anatase TiO2 in the
9
ACS Paragon Plus Environment