8
L. Zhu et al. / Catalysis Communications 21 (2012) 5–8
Table 2
Effect of the Ir contents on the performance of Ir/ZrO2 catalystsa.
Catalyst
Conversion
(%)
TOFb
Selectivity (%)
(×10−3 s−1
)
Crotyl alcohol
Butanal
Butanol
Othersc
1Ir/ZrO2
2Ir/ZrO2
3Ir/ZrO2
4Ir/ZrO2
5Ir/ZrO2
6.0(12.7)
12.2(34.9)
16.0(40.8)
25.2(59.1)
31.6(59.4)
2.9(6.1)
6.2(17.8)
7.6(19.3)
10.5(24.6)
15.2(70.6)
58.2(55.7)
77.0(66.5)
82.2(70.5)
76.2(56.6)
75.5(54.1)
21.6(17.6)
13.2(8.5)
8.1(5.4)
10.1(6.9)
9.8(7.0)
4.6(10.0)
6.1(19.5)
7.1(20.0)
9.5(31.8)
10.8(33.4)
15.6(16.7)
3.7(5.5)
2.7(4.1)
4.2(4.6)
3.9(5.5)
a
Experimental data were taken at 300 min or (60 min).
Calculated based on Ir dispersion by CO chemisorption results.
Others include C3 and C8.
b
c
Scheme 1. Proposed adsorption model of crotonaldehyde on Ir/ZrO2 catalyst.
[3] C.J. Kliewer, M. Bieri, G.A. Somorjai, J. Am. Chem. Soc. 131 (2009) 9958–9966.
[4] B. Campo, C. Petit, M.A. Volpe, J. Catal. 254 (2008) 71–78.
[5] E. Gebauer-Henke, J. Grams, E. Szubiakiewicz, J. Farbotko, R. Touroude, J.
Rynkowski, J. Catal. 250 (2007) 195–208.
[6] A. Huidobro, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, J. Catal. 212 (2002)
94–103.
[7] E.V. Ramos-Fernández, B. Samaranch, P. Ramírez de la Piscina, N. Homs, J.L.G.
Fierro, F. Rodríguez-Reinoso, A. Sepúlveda-Escribano, Appl. Catal., A. 349 (2008)
165–169.
[8] F. Ammari, J. Lamotte, R. Touroude, J. Catal. 221 (2004) 32–42.
[9] K. Liberková, R. Touroude, J. Mol. Catal. 180 (2002) 221–230.
[10] D.Y. Murzin, M. Abid, R. Touroude, Crotonaldehyde Hydrogenation on Ir/TiO2, in:
D.G. Morrell (Ed.), Catalysis of Organic Reactions, Chemical Industries, Marcel
Dekker Inc, New York, 2003, pp. 577–586.
bond adsorption increase. Moreover, the weakened Lewis acidity on
the catalyst may suppress the adsorption of C_O bond, which
would result in a lower selectivity to crotyl alcohol. Therefore, the
suppressed selectivity to crotyl alcohol could be attributed to the pro-
nounced adsorption of C_C bond with increasing Ir particle size.
4. Conclusion
In summary, Ir/ZrO2 catalysts showed high activities for crotonal-
dehyde hydrogenation and high selectivities to crotyl alcohol. With
increasing Ir content in the catalyst, the crotonaldehyde conversion
gradually increased. However, all the catalysts suffered deactivation
during the reaction, which may be due to the CO poisoning caused
by decarbonylation reaction. Also, it is found that both the Ir particle
size and surface Lewis acidity play important roles in the selectivity to
the desired crtoyl alcohol. The highest selectivity (82.2%) is obtained
on the 3Ir/ZrO2 catalyst, due to its proper Ir particle size and the high-
est amount of surface acid sites in the catalyst.
[11] P. Reyes, M.C. Aguirre, I. Melian-Cabrera, M.L. Granados, J.L.G. Fierro, J. Catal. 208
(2002) 229–237.
[12] P. Reyes, M.C. Aguirre, G. Pecchi, J.L.G. Fierro, J. Mol. Catal. 164 (2000) 245–251.
[13] P. Mäki-Arvela, J. Hájek, T. Salmi, D.Y. Murzin, Appl. Catal., A. 292 (2005) 1–49.
[14] K. Liberkova, R. Touroude, D.Y. Murzin, Chem. Eng. Sci. 57 (2002) 2519–2529.
[15] M. Consonni, D. Jokic, D.Y. Murzin, R. Touroude, J. Catal. 188 (1999) 165–175.
[16] Z.X. Lu, P.Y. Wu, S.F. Ji, H. Liu, C.Y. Li, J. Mol. Catal. (China) 22 (2008) 368–373.
[17] B.C. Campo, S. Ivanova, C. Gigola, C. Petit, M.A. Volpe, Catal. Today 133 (2008)
661–666.
[18] J. Silvestre-Albero, F. Coloma, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, Appl.
Catal., A. 304 (2006) 159–167.
[19] M. Grass, R. Rioux, G. Somorjai, Catal. Lett. 128 (2009) 1–8.
[20] M. Englisch, V.S. Ranade, J.A. Lercher, Appl. Catal., A. 163 (1997) 111–122.
[21] A.B. Merlo, G.F. Santori, J. Sambeth, G.J. Siri, M.L. Casella, O.A. Ferretti, Catal.
Commun. 7 (2006) 204–208.
[22] F. Ammari, C. Milone, R. Touroude, J. Catal. 235 (2005) 1–9.
[23] S.W. Yang, J. Xu, Q. Xin, J. Mol. Catal. (China) 12 (1998) 152–159.
[24] A. Dandekar, M.A. Vannice, J. Catal. 183 (1999) 344–354.
[25] X.X. Wang, H.Y. Zheng, X.J. Liu, G.Q. Xie, J.Q. Lu, L.Y. Jin, M.F. Luo, Appl. Catal., A.
388 (2010) 134–140.
Acknowledgments
This work was supported by the National Science Foundation of
China (Grant No. 21173194) and the Natural Science Foundation of
Zhejiang Provincial of China (Grant No. Y4100300).
References
[1] E.V. Ramos-Fernández, J. Silvestre-Albero, A. Sepúlveda-Escribano, F. Rodríguez-
Reinoso, Appl. Catal., A. 374 (2010) 221–227.
[2] P.G.N. Mertens, P. Vandezande, X. Ye, H. Poelman, I.F.J. Vankelecoma, D.E. De Vos,
Appl. Catal., A. 355 (2009) 176–183.