SURFACE PROPERTIES AND HYDROGENATION ACTIVITY OF AN Ir/TiO2 CATALYST
237
in Fig. 6 and therefore they cannot be responsible for deac-
tivation, as has been suggested in previous works.
7. Coq, B., Kumbhar, P. S., Moreau, C., Moreau, P., and Figueras, F.,
J. Phys. Chem. 98, 10180 (1994).
8
9
. Vannice, M. A., and Sen, B., J. Catal. 115, 65 (1989).
. English, M., Jentys, A., and Lercher, J. A., J. Catal. 166, 25 (1997).
4
. CONCLUSIONS
1
1
0. Galvagno, S., Milone, C., Donato, A., Neri, G., and Pietropaolo, R.,
Catal. Lett. 18, 211 (1993).
1. Dandekar, A., and Vannice, M. A., J. Catal. 183, 344 (1999).
A titania-supported catalyst exhibits different surface
and catalytic properties after reduction at low or high tem- 12. Vannice, M. A., Catal. Today 12, 255 (1992).
1
1
3. Haller, G. L., and Resasco, D. E., Adv. Catal. 36, 173 (1989).
4. Munuera, G., Gonz a´ lez-Elipe, A. R., Espin o´ s, J. P., Conesa, J. C., Soria,
J., and Sanz, J., J. Phys. Chem. 91, 6625 (1987).
peratures. High-temperature reduction (HT) induces the
decoration of Ir particles generating metal–TiOX moieties,
which appear to be responsible for the increase in the ac-
tivity of crotonaldehyde hydrogenation and in selectivity
to crotyl alcohol. In situ DRIFTS studies have shown the
formation of a [–C=O. . . surface] σ-bonded complex, cha-
1
1
5. Vannice, M. A., Top. Catal. 4, 241 (1997).
6. Wagner, C. D., Davis, L. E., Zeller, M. V., Taylor, J. A., Raymond,
R. H., and Gale, L. H., Surf. Interface Anal. 3, 211 (1981).
7. Raab, G. C., and Lercher, J. A., Catal. Lett. 18, 99 (1993).
1
−1
18. Reyes, P., Aguirre, M. C., Pecchi, G., and Fierro, J. L. G., J. Mol. Catal.
64, 245 (2000).
9. Tauster, S. J., Fung, S. C., and Garten, R. L., J. Am. Chem. Soc. 100,
70 (1978).
racterized by a band at 1650 cm , which became stabi-
lized at the metal–TiOx interface. HT treatment enhances
the metal–TiOx contact and improves the catalytic proper-
1
1
1
ties of the Ir/TiO2 catalyst. The catalytic performance in the 20. Bastein, A. G. T. M., van der Boogert, W. J., van der Lee, G., Luo, H.,
and Ponec, V., Appl. Catal. 29, 243 (1987).
1. Orita, H., Naito, S., and Tamaru, K., J. Phys. Chem. 89, 3066 (1985).
2. Resasco, D. E., Ph.D. thesis. YaleUniversity, NewHaven, Connecticut,
vapor-phase hydrogenation of crotonaldehyde showed that
2
2
turnover frequency was more than one order of magnitude
higherforHTcatalystthanforitsLTcounterpart. Deactiva-
tion of the catalysts takes place under onstream operation.
Two proposals are advanced to explain the catalyst deacti-
vation: (i) the formation of a strongly chemisorbed asym-
1983.
2
3. Briggs, D., and Seah, M. P., Eds., “Practical Surface Analysis:
Auger and X-Ray Photoelectron Spectroscopy.” Wiley, Chichester,
1990.
−1
24. (a) Vannice, M. A., J. Mol. Catal. 59, 165 (1990). (b) Ponec, V., Appl.
Catal. A 149, 27 (1997).
5. Rekoske, J. E., and Barteau, M. A., Langmuir 15, 2061 (1999).
6. Sheppard, N., and de la Cruz, C., Adv. Catal. 41, 1 (1996).
metric carboxylate (band at 1740 cm ); and (ii) the for-
mation of heavy products with conjugated C=O and C=C
2
2
−1
bonds (band at 1720 cm ). Both complexes are formed at
the expenses of the σ-complex and block the active and 27. de la Cruz, C., and Sheppard, N., J. Chem. Soc. Faraday Trans. 93, 3569
(
1997).
selective sites.
2
2
3
8. Coloma, F., Coronado, J. M., Rochester, C. H., and Anderson, J. A.,
Catal. Lett. 51, 155 (1998).
9. Serwicka, M., Black, E. J. B., and Goodenough, J. B., J. Catal. 106, 23
(
0. Popova, G. Ya., Davydov, A. A., Andrushkevich, T. V., and Zakharov,
I. I., Kinet. Catal. 36, 125 (1995).
1. Ponec, V., Appl. Catal. 149, 27 (1997).
2. Nishiyama, S., Hara, T., Tsuruya, S., and Masai, M., J. Phys. Chem.
103, 4431 (1999).
ACKNOWLEDGMENTS
1997).
The authors thank CONICYT (Chile) through FONDECYT Research
Grants 1980345 and 2990065 and CSIC-CONICYT bilateral cooperative
programme for financial support.
3
3
REFERENCES
33. Bailie, J. E., Rochester, C. H., and Hutchings, G. J., J. Chem. Soc.
1
2
3
. Raab, G. C., and Lercher, J. A., J. Mol. Catal. 75, 7 (1992).
. Bonnier, J. M., Damori, J. P., and Masson, J., Appl. Catal 42, 285 (1988).
. Marinelli, T. B. L. W., Nabuurs, S., and Ponec, V., J. Catal. 151, 431
Faraday Trans. 93, 4389 (1997).
34. Yee, A., Morrison, S. J., and Idriss, H., J. Catal. 186, 279 (1999).
35. Popova, G. Ya., Andrushkevich, T. V., Meshcheryakov, V. D., and
Davydov, A. A., Kinet. Catal. 31, 351 (1990).
(1995).
4
5
6
. Sep u´ lveda-Escribano, A., Coloma, F., and Rodriguez-Reinoso, F.,
J. Catal. 178, 649 (1998).
. Galvagno, S., Milone, C., Neri, G., Donato, A., and Pietropaolo, R.,
Stud. Surf. Sci. Catal. 78, 163 (1993).
36. Kubelkova, L., and Trifir o` , F., J. Catal. 26, 242 (1972).
37. Luo, S., and Falconer, J. L., Catal. Lett. 57, 89 (1999).
38. Busca, G., Saussey, H., Saur, O., Lavalley, J.-C., and Lorenzelli, V.,
Appl. Catal. 14, 245 (1985).
. Yoshitake, H., and Iwasawa, Y., J. Catal. 125, 227 (1990).
39. Hadjivanov, K. I., and Klissurski, D., Chem. Soc. Rev. 25, 61 (1996).