8
32
G.-L. Zhang and X.-H. Cai
quantities of reagents at different reaction temperature (50, 80, and 1008C).
The best results were obtained with a 1:1:1.5:0.2-mol ratio of aldehyde,
ethyl acetoacetate, urea, and magnesium chloride hexahydrate under
solvent-free conditions at 808C for 1 h.
In a typical procedure, a mixture of ethyl acetoacetate (0.65 g, 5 mmol),
benzaldehyde (0.503 g, 5 mmol), urea (0.45 g, 7.5 mmol), and magnesium
chloride hexahydrate (0.20 g, 1 mmol) was heated to 808C for 1 h. After com-
pletion (monitored by TLC), the reaction mixture was cooled to room
temperture and poured into water (30 mL). The solid was separated by
filtration, washed with water, and then recrystallized from ethanol to afford
[
18]
4
a, mp 203ꢀ2048C (lit.
mp 200ꢀ2028C) in 96% yield. Similarly, substi-
tuted aldehyde, and 1,3-dicarbonyl compound were together heated with
urea to give the corresponding 3,4-dihydropyrimidin-2-(1H)-ones, which
were purified by recrystallizing from ethanol or washing three times with
cool ethyl acetate. The results are summarized in Table 2. Apparently, the
procedure gave the products in high yields (85ꢀ97%) within 1.5 h at 808C
and solvent was not necessary. Moreover, the separation and purification of
the products is simple.
In conclusion, an economically and environmentally friendly procedure for
the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones using magnesium chloride
hexahydrate as catalyst was developed. The synthetic procedure provides an
efficient and attractive method to synthesize DPHMs by Biginelli condensation
in good to excellent yields under solvent-free conditions.
REFERENCES
1
. (a) Rovnyak, G. C.; Kimball, S. D.; Beyer, B.; Cucinotta, G.; Dimarco, J. D.;
Gougoutas, J.; Hedberg, A.; Malley, M.; Mcarthy, J. P.; Zhang, R.; Moreland, S.
J. Med. Chem. 1995, 38, 119; (b) Atwal, K. S.; Rovnyak, G. C.; Kimball, S. D.;
Floyd, D. M.; Moreland, S.; Swanson, B. N.; Gougoutas, J. Z.; Schwartz, J.;
Smillie, K. M.; Malley, M. F. J. Med. Chem. 1990, 33, 2629; (c) Atwal, K. S.;
Swanson, B. N.; Unger, S. E.; Floyd, D. M.; Moreland, S.; Hedberg, A.;
O’Reilly, B. C. J. Med. Chem. 1991, 34, 806; (d) Michael, B.; Rainer, E.;
Reinhold, G.; Jochen, K.; Siegfried, R. Bioorg. Med. Chem. Lett. 2003, 13, 241;
(
e) Oliver, K. C. Eur. J. Med. Chem. 2000, 35, 1043.
2
. (a) Kappe, C. D. Eur. J. Med. Chem. 2000, 35, 1043; (b) James, C. B.;
Kristen, L. G.; Harold, G. S.; Roger, M. F.; Raymond, S. L. C.; Stacey, S. O.;
Carla, W. Bioorg. Med. Chem. Lett. 2000, 10, 1917; (c) Zarghi, A.; Sadeghi, H.;
Fassihi, A.; Faizi, M.; Shafiee, A. Farmaco. 2003, 58, 1077.
3
4
5
6
. Snider, B. B.; Shi, Z. J. Org. Chem. 1993, 58, 3828.
. Biginelli, P. Gazz. Chim. Ital. 1893, 23, 360.
. Ravi, V.; Alam, M. M.; Adapa, S. R. Synlett 2003, 67.
. Sun, Q.; Wang, Y. Q.; Ge, Z. M.; Cheng, T. M.; Li, R. T.; Reddy, C. V.;
Mahesh, M.; Raju, P. V. K.; Babu, T. R.; Reddy, V. V. N. Tetrahedron Lett.
2
002, 43, 2657.