R. Kato et al. / Tetrahedron Letters 42 (2001) 5053–5056
5055
reported by Yeo et al.10 and Kubo et al.2c are alkyl
substituted compounds. Thus, it seems likely that
hydrogen-bonding interaction between the reported
thiouronium compound and anion is much weaker than
that between our compound and anion, although elec-
trostatic interaction is strong for thiouronium group.
Chem. Rev. 1997, 97, 1609; (b) Beer, P. D. Acc. Chem.
Res. 1998, 31, 71; (c) Antonisse, M. M. G.; Reinhoudt,
D. N. Chem. Commun. 1998, 443; (d) Snowden, T. S.;
Anslyn, E. V. Curr. Opin. Chem. Biol. 1999, 3, 740; (e)
Antonisse, M. M. G.; Reinhoudt, D. N. Electroanalysis
1999, 11, 1035; (f) Beer, P. D.; Gale, P. A. Angew.
Chem., Int. Ed. 2001, 40, 486.
Chromoionophore 2 was then applied to the colorimet-
ric determination of acetic acid in a commercially avail-
able brand of vinegar. The analysis was carried out in
1% water–99% MeCN (v/v) by a standard addition
method using the complexation-induced absorption
change at 450 nm.‡ The acetic acid concentration in the
vinegar sample was determined to be 4.14 0.06 g/100
mL, which agrees with the specification provided by the
supplier (4.2 g/100 mL). As compared with standard
enzymatic methods that require use of three enzymes,8b
use of hydrogen-bonding chromoionophores8d is a
much simpler method to detect acetate (or acetic acid)
in solution.
2. For recent topics, see: (a) Nishizawa, S.; Kato, Y.;
Teramae, N. J. Am. Chem. Soc. 1999, 121, 9463; (b)
Berrocal, M. J.; Cruz, A.; Badr, I. H. A.; Bachas, L.
G. Anal. Chem. 2000, 72, 5295; (c) Kubo, Y.; Tsuka-
hara, M.; Ishihara, S.; Tokita, S. Chem. Commun. 2000,
653; (d) Sun, S.-S.; Lees, A. J. Chem. Commun. 2000,
1687; (e) Anzenbacher, Jr., P.; Jurs´ıkova´, K.; Sessler, J.
L. J. Am. Chem. Soc. 2000, 122, 9350; (f) Chamberlain,
II, R. V.; Slowinska, K.; Majda, M.; Bu¨hlmann, P.;
Aoki, H.; Umezawa, Y. Langmuir 2000, 16, 1388; (g)
Watanabe, S.; Higashi, N.; Kobayashi, M.; Hamanaka,
K.; Takata, Y.; Yoshida, K. Tetrahedron Lett. 2000, 41,
4583; (h) Lu¨cking, U.; Rudkevich, D. M.; Rebek, Jr., J.
Tetrahedron Lett. 2000, 41, 9547.
In summary, we have shown that highly selective, col-
orimetric sensing of acetate can be achieved by 2 in a
binary mixture of water and MeCN. Although further
improvements of the acetate selectivity over higher
charged inorganic anions as well as other carboxylates
may be necessary for the analysis of acetate in other
types of samples, the concentration of acetic acid in the
vinegar was successfully determined with 2. Due to its
very strong ability to form complexes with anions that
act as hydrogen bond acceptors, receptor 2 might also
be a promising candidate for various applications such
as anion transports and/or electrochemical sensors,1,8c
which are now underway in our laboratory.
3. (a) Bell, T. W.; Hou, Z.; Luo, Y.; Drew, M. G. B.;
Chapoteau, E.; Czech, B. P.; Kumar, A. Science 1995,
269, 671; (b) Kubo, Y.; Maeda, S.; Tokita, S.; Kubo,
M. Nature 1996, 382, 522; (c) Elghanian, R.; Storhoff,
J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A.
Science 1997, 277, 1078; (d) Hirayama, E.; Sugiyama,
T.; Hisamoto, H.; Suzuki, K. Anal. Chem. 2000, 72,
465.
4. (a) Beer, P. D.; Graydon, A. R.; Johnson, A. O. M.;
Smith, D. K. Inorg. Chem. 1997, 36, 2112; (b) Black,
C. B.; Andrioletti, B.; Try, A. C.; Ruiperez, C.; Sessler,
J. L. J. Am. Chem. Soc. 1999, 121, 10438; (c) Miyaji,
H.; Sato, W.; Sessler, J. L. Angew. Chem., Int. Ed.
2000, 39, 1777; (d) Miyaji, H.; Sessler, J. L. Angew.
Chem., Int. Ed. 2001, 40, 154; (e) For chromogenic
receptors for dicarboxylic acids, see: Goodman, M. S.;
Hamilton, A. D.; Weiss, J. J. Am. Chem. Soc. 1995,
117, 8447.
5. For competition methods for chromogenic anion sens-
ing, see: (a) Metzger, A.; Anslyn, E. V. Angew. Chem.,
Int. Ed. 1998, 37, 649; (b) Lavigne, J. J.; Anslyn, E. V.
Angew. Chem., Int. Ed. 1999, 38, 3666; (c) Gale, P. A.;
Twyman, L. J.; Handlin, C. I.; Sessler, J. L. Chem.
Commun. 1999, 1851; (d) Niikura, K.; Bisson, A. P.;
Anslyn, E. V. J. Chem. Soc., Perkin Trans. 2 1999,
1111.
Acknowledgements
We thank Dr. Hinako Ando, Instrumental Analysis
Center for Chemistry, Faculty of Science, Tohoku Uni-
versity, for microanalysis. This work was supported by
Grants-in-Aid for Scientific Research (A), No.
11304054, Encouragement of Young Scientist, No.
13740417, from the Ministry of Education, Science,
Sports and Culture, Japan, and RFTF of Japan Society
for the Promotion of Science.
6. (a) Nishizawa, S.; Kato, R.; Hayashita, T.; Teramae,
N. Anal. Sci. 1998, 14, 595; (b) Hayashita, T.;
Onodera, T.; Kato, R.; Nishizawa, S.; Teramae, N.
Chem. Commun. 2000, 755.
7. For examples, see: (a) Bu¨hlmann, P.; Nishizawa, S.;
Xiao, K. P.; Umezawa, Y. Tetrahedron 1997, 53, 1647;
(b) Jagessar, R. C.; Shang, M.; Scheidt, W. R.; Burns,
D. H. J. Am. Chem. Soc. 1998, 120, 11684; (c) Sasaki,
S.; Mizuno, M.; Naemura, K.; Tobe, Y. J. Org. Chem.
2000, 65, 275.
8. (a) Official Methods of Analysis of the Association of
Official Analytical Chemists, 15th ed.; Helrich, K., Ed.;
AOAC: Arlington, VA, 1990; (b) Bergmeyer, H. S.;
Moellering, H. In Methods of Enzymatic Analysis, 3rd
ed.; Bergmeyer, H. U., Ed.; VCH: Weinheim, 1984;
References
1. For recent reviews on artificial receptors for anion
recognition, see: (a) Schmidtchen, F. P.; Berger, M.
‡ Sample preparation: To eliminate interfering cations, 0.1 mL of
vinegar was first passed through
a cation exchange column
(DOWEX-50-X8, H+-form) with deionized water as an eluting
solvent. The pH of the eluent collected was adjusted to ca. 6.0 with
N(C4H9)4OH, followed by making up the volume to 100 mL with
deionized water. An aliquot (0.1 mL) out of 100 mL was then
−
diluted to 10 mL with MeCN containing 2 (20 mM) and MeCO2
(as N(C4H9)4 salt, 0–10 mM).
+