K. J. Szab o¬ and O. A. Wallner
FULL PAPER
[
[
3] Y. Tamaru, J. Organomet. Chem.
1
999, 576, 215.
4] M. Kimura, I. Kiyama, T. Tomiza-
wa, Y. Horino, S. Tanaka, Y.
Tamaru, Tetrahedron Lett. 1999,
4
0, 6795.
[
[
5] Y. Masuyama, N. Kinugawa, Y.
Kurusu, J. Org. Chem. 1987, 52,
3
702.
6] Y. Masuyama, K. Otake, Y. Kur-
usu, Tetrahedron Lett. 1988, 29,
3
563.
Figure 3. Side-view presentation of 9b and 9d to illustrate the chair conformation of the cyclic six-membered TS
structures.
[7] K. Yasui, Y. Goto, T. Yajima, Y.
Taniseki, K. Fugami, A. Tanaka,
Tetrahedron Lett. 1993, 34, 7619.
[
ꢀ] Y. Tamaru, A. Tanaka, K. Yasui, S.
Goto, S. Tanaka, Angew. Chem.
1
995, 107, ꢀ62; Angew. Chem. Int. Ed. 1995, 34, 7ꢀ7.
9] J. P. Takahara, Y. Masuyama, Y. Kurusu, J. Am. Chem. Soc. 1992, 114,
577.
10] O. A. Wallner, K. J. Szab o¬ , Org. Lett. 2002, 4, 1563.
[11] O. A. Wallner, K. J. Szab o¬ , J. Org. Chem. 2003, 68, 2934.
12] A. Goliaszewski, J. Schwartz, Tetrahedron 1985, 41, 5779.
[13] H. Nakamura, H. Iwama, Y. Yamamoto, J. Am. Chem. Soc. 1996, 118,
641.
can also be extended to heteroaromatic substrates. Density
functional calculations were undertaken to study the develop-
ment of the selectivity in the reaction. The theoretical results
show that the two most important factors controlling the
selectivity are: the location of the phenyl functionality in the
[
2
[
[
1
h -moiety of the bis(allyl)palladium intermediate; and the
6
relative configuration of the phenyl substituents in the cyclic
six-membered transition state of the reaction. The lowest
energy path corresponds to the 8a ! 9a ! 9b ! 9c process
providing the branched allylic isomer, in which the phenyl
groups are in anti configuration. These computational results
are in excellent agreement with the experimental catalytic
results presenting the same regio- and stereoselectivity for the
product.
The stereo- and regioselectivity of the above palladium-
catalyzed electrophilic substitution reactions are controlled
by new mechanistic features. Employment of these novel
elements in the development of catalytic transforma-
tions offers a new alternative route for the regio- and
stereoselective synthesis of densely functionalized allylic
synthons.
[
14] H. Nakamura, J.-G. Shim, Y. Yamamoto, J. Am. Chem. Soc. 1997, 119,
ꢀ113.
[15] H. Nakamura, K. Aoyagi, J.-G. Shim, Y. Yamamoto, J. Am. Chem.
Soc. 2001, 123, 372.
[
[
[
16] K. J. Szab o¬ , Chem. Eur. J. 2000, 6, 4413.
17] N. Solin, S. Narayan, K. J. Szab o¬ , J. Org. Chem. 2001, 66, 16ꢀ6.
1ꢀ] N. Solin, S. Narayan, K. J. Szab o¬ , Org. Lett. 2001, 3, 909.
[19] S. A. Godleski, in Nucleophiles with Allyl-Metal Complexes, Vol. 4
Eds.: B. M. Trost, I. Fleming), Pergamon New York, 1991, p.
(
Chapter 3.3.
[
[
20] B. M. Trost, Acc. Chem. Res. 1980, 13, 3ꢀ5.
21] B. M. Trost, Acc. Chem. Res. 1996, 29, 355.
[22] B. äkermark, K. Zetterberg, S. Hansson, B. Krakenberger, A.
Vitagliano, J. Organomet. Chem. 1987, 335, 133.
[
[
23] K. J. Szab o¬ , Chem. Soc. Rev. 2001, 30, 136.
24] J. Tsuji, Palladium Reagents and Catalysis: Innovations in Organic
Synthesis, Wiley, Chichester, 1995.
[
[
[
25] M. Parra, R. Mestres, D. Aparicio, N. Durana, G. Rubiales, J. Chem.
Soc. Perkin I 1989, 327.
26] N. A. Bumagin, A. N. Kasatkin, I. P. Beletskaya, Izv. Akad. Nauk
SSSR, Ser. Khim. (Engl. Transl.) 1984, 636.
27] A. D. Becke, J. Chem. Phys. 1993, 98, 564ꢀ.
Experimental Section
General procedure for allylation of aldehydes 2a ± 2i with cinnamyl
[2ꢀ] J. P. Perdew, Y. Wang, Phys. Rev. B 1992, 45, 13244.
chlorides 1a ± d: The corresponding aldehyde (2a ± 2i) (0.30 mmol),
cinnamyl chloride 1a ± d (0.36 mmol), and h -allylpalladium chloro dimer
[29] T. H. Dunning, P. J. Hay, Modern Theoretical Chemistry, Vol. 3,
Plenum, New York, 1977.
3
(
2.7 mg, 0.0075 mmol) were dissolved in THF (2.3 mL) containing 4 ä
molecular sieves (70 mg) and heated to 408C. Hexamethylditin (11ꢀ mg,
.36 mmol) in THF (0.7 mL) was added over a period of 12 h to this
[30] P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270.
[31] P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299.
0
[32] Gaussian 9ꢀ (Revision A.7), M. J. Frisch, G. W. Trucks, H. B. Schlegel,
G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A.
Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M.
Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi,
V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo,
S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K.
Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B.
Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A.
Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin,
D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C.
Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen,
M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A.
Pople, Gaussian, Inc., Pittsburgh, PA, 1998.
reaction mixture by using a syringe pump, and then the reaction mixture
was stirred for additional 12 h at 408C. After evaporation of the solvent the
crude product was purified by silica gel chromatography. Further exper-
imental details and characterization of 3b ± l are given in the Supporting
Information.
Acknowledgement
This work was supported by the Swedish Natural Science Research Council
(
NFR). The calculations were done at the IBM SP2 parallel computer
facility of the Parallelldatorcentrum (PDC) at the Royal Institute of
Technology, Sweden. The authors thank the PDC for a generous allotment
of computer time.
[
33] J. Krause, R. Goddard, R. Mynott, K.-R. Pˆrschke, Organometallics
001, 20, 1992.
2
[
[
1] J. A. Marshall, Chem. Rev. 2000, 100, 3163.
2] S. Araki, T. Kamei, T. Hirashita, H. Yamamura, M. Kawai, Org. Lett.
2
000, 2, ꢀ47.
Received: March 2ꢀ, 2003 [F5002]
4030
¹ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.chemeurj.org
Chem. Eur. J. 2003, 9, 4025 ± 4030