10.1002/anie.201810501
Angewandte Chemie International Edition
COMMUNICATION
Chem. Int. Ed. 2009, 48, 9038–9049; Angew. Chem. 2009, 121, 9200–
L.-H. Tran, J. Piera, B. Åkermark, J.-E. Bäckvall, Chem. Eur. J. 2008,
14, 7500–7503; c) E. V. Johnston, E. A. Karlsson, S. A. Lindberg, B.
Åkermark, J.-E. Bäckvall, Chem. Eur. J. 2009, 15, 6799–6801; d) E. V.
Johnston, E. A. Karlsson, L.-H. Tran, B. Aakermark, J.-E. Bäckvall, Eur.
J. Org. Chem. 2009, 3973–3976.
9212.
[5]
[6]
a) R. A. Sheldon, I. W. C. E. Arends, G.-J. ten Brink, A. Dijksman, Acc.
Chem. Res. 2002, 35, 774–781; b) M. S. Sigman, D. R. Jensen, Acc.
Chem. Res. 2006, 39, 221–229; c) E. J. Horn, B. R. Rosen, P. S. Baran,
ACS Cent. Sci. 2016, 2, 302–308.
[14] a) N. Krause, A. S. K. Hashmi, Modern Allene Chemistry, Wiley-VCH
Verlag & Co. KGaA, Weinheim, Germany, 2008; b) C. Aubert, L.
Fensterbank, P. Garcia, M. Malacria, A. Simonneau, Chem. Rev. 2011,
111, 1954–1993; c) F. Inagaki, S. Kitagaki, C. Mukai, Synlett 2011,
2011, 594–614; d) N. Krause, C. Winter, Chem. Rev. 2011, 111, 1994–
2009; e) F. López, J. L. Mascareñas, Chem. Eur. J. 2011, 17, 418–428;
f) P. Rivera-Fuentes, F. Diederich, Angew. Chem. Int. Ed. 2012, 51,
2818–2828; Angew. Chem. 2012, 124, 2872–2882; g) S. Yu, S. Ma,
Angew. Chem. Int. Ed. 2012, 51, 3074–3112; Angew. Chem. 2012, 124,
3128–3167; h) J. Ye, S. Ma, Acc. Chem. Res. 2014, 47, 989–1000.
[15] B. Yang, Y. Qiu, J.-E. Bäckvall, Acc. Chem. Res. 2018, 51, 1520–1531.
[16] a) N. Saito, T. Ichimaru, Y. Sato, Chem. Asian J. 2012, 7, 1521–1523;
b) Y. Ohta, S. Yasuda, Y. Yokogawa, K. Kurokawa, C. Mukai, Angew.
Chem. Int. Ed. 2014, 54, 1240–1244; Angew. Chem. 2015, 127, 1256–
1260; c) C. Raviola, S. Protti, D. Ravelli, M. Fagnoni, Chem. Soc. Rev.
2016, 45, 4364–4390; d) D. Cassú, T. Parella, M. Solà, A. Pla‐
Quintana, A. Roglans, Chem. Eur. J. 2017, 23, 14889–14899.
[17] Y. Qiu, B. Yang, C. Zhu, J.-E. Bäckvall, Angew. Chem. Int. Ed. 2016,
55, 6520–6524; Angew. Chem. 2016, 128, 6630–6634.
For recent reviews, see: a) R. I. McDonald, G. Liu, S. S. Stahl, Chem.
Rev. 2011, 111, 2981–3019; b) M. S. Sigman, E. W. Werner, Acc.
Chem. Res. 2012, 45, 874–884; c) W. Wu, H. Jiang, Acc. Chem. Res.
2012, 45, 1736–1748; d) X.-F. Wu, X. Fang, L. Wu, R. Jackstell, H.
Neumann, M. Beller, Acc. Chem. Res. 2014, 47, 1041–1053; e) J. J.
Dong, W. R. Browne, B. L. Feringa, Angew. Chem. Int. Ed. 2015, 54,
734–744; Angew. Chem. 2015, 127, 744–755; f) S. E. Mann, L.
Benhamou, T. D. Sheppard, Synthesis 2015, 47, 3079–3117; g) G. Yin,
X. Mu, G. Liu, Acc. Chem. Res. 2016, 49, 2413–2423; h) Z. Dong, Z.
Ren, S. J. Thompson, Y. Xu, G. Dong, Chem. Rev. 2017, 117, 9333–
9403; i) D. Zhang, J. Liu, A. Córdova, W.-W. Liao, ACS Catal. 2017, 7,
7051–7063; j) H. Sommer, F. Juliá-Hernández, R. Martin, I. Marek,
ACS Cent. Sci. 2018, 4, 153–165.
[7]
For recent reviews, see: a) C. Liu, J. Yuan, M. Gao, S. Tang, W. Li, R.
Shi, A. Lei, Chem. Rev. 2015, 115, 12138–12204; b) J. F. Hartwig, M. A.
Larsen, ACS Cent. Sci. 2016, 2, 281–292; c) A. V. Iosub, S. S. Stahl,
ACS Catal. 2016, 6, 8201–8213; d) H. M. L. Davies, D. Morton, ACS
Cent. Sci. 2017, 3, 936–943; e) J. He, M. Wasa, K. S. L. Chan, Q. Shao,
J.-Q. Yu, Chem. Rev. 2017, 117, 8754–8786; f) Y.-F. Liang, N. Jiao,
Acc. Chem. Res. 2017, 50, 1640–1653; g) Y. Yang, J. Lan, J. You,
Chem. Rev. 2017, 117, 8787–8863; h) H. Sterckx, B. Morel, B. U. W.
Maes, Angew. Chem. Int. Ed. 2018, 57, 10.1002/anie.201804946.
a) A. N. Campbell, S. S. Stahl, Acc. Chem. Res. 2012, 45, 851–863; b)
L. Jin, A. Lei, Sci. China Chem. 2012, 55, 2027–2035; c) Z. Shi, C.
Zhang, C. Tang, N. Jiao, Chem. Soc. Rev. 2012, 41, 3381–3430.
D. Wang, A. B. Weinstein, P. B. White, S. S. Stahl, Chem. Rev. 2018,
118, 2636–2679.
[18] C. Zhu, B. Yang, T. Jiang, J.-E. Bäckvall, Angew. Chem. Int. Ed. 2015,
54, 9066–9069; Angew. Chem. 2015, 127, 9194–9197.
[19] There is an equilibrium between PhB(OH)2 and its anhydride form
(PhBO)3. We speculate that the addition of water can promote the
equilibrium toward the formation of PhB(OH)2. Please see the
Supporting Information for details.
[8]
[9]
[20] The side product 3a’ and 3a’’ in Scheme 2 were not obtained. For a
discussion on the selectivity, please see the Supporting Information.
[21] The isomer of arene from aromatization of tetraene 3a was not
observed.
[10] a) J. Piera, J.-E. Bäckvall, Angew. Chem. Int. Ed. 2008, 47, 3506–3523;
Angew. Chem. 2008, 120, 3558–3576; b) A. Vasseur, J. Muzart, J. Le
Bras, Eur. J. Org. Chem. 2015, 2015, 4053–4069; c) A. E. Wendlandt,
S. S. Stahl, Angew. Chem. Int. Ed. 2015, 54, 14638–14658; Angew.
Chem. 2015, 127, 14848–14868.
[22] A proposed catalytic cycle for reoxidation of Pd(0) by Co(salophen)-HQ
is given in the Supporting Information. For a related mechanistic study,
see: C. W. Anson, S. Ghosh, S. Hammes-Schiffer, S. S. Stahl, J. Am.
Chem. Soc. 2016, 138, 4186–4193.
[11] a) J.-E. Bäckvall, A. K. Awasthi, Z. D. Renko, J. Am. Chem. Soc. 1987,
109, 4750–4752; b) J.-E. Bäckvall, R. B. Hopkins, H. Grennberg, M.
Mader, A. K. Awasthi, J. Am. Chem. Soc. 1990, 112, 5160–5166.
[12] For recent examples, see: a) J. Piera, K. Naerhi, J.-E. Bäckvall, Angew.
Chem. Int. Ed. 2006, 45, 6914–6917; Angew. Chem. 2006, 118, 7068–
7071; b) J. Piera, A. Persson, X. Caldentey, J.-E. Bäckvall, J. Am.
Chem. Soc. 2007, 129, 14120–14121; c) B. Morandi, Z. K. Wickens, R.
H. Grubbs, Angew. Chem. Int. Ed. 2013, 52, 2944–2948; Angew. Chem.
2013, 125, 3016–3020; d) C. M. R. Volla, J.-E. Bäckvall, Angew. Chem.
Int. Ed. 2013, 52, 14209–14213; Angew. Chem. 2013, 125, 14459–
14463; e) C. C. Pattillo, I. I. Strambeanu, P. Calleja, N. A. Vermeulen, T.
Mizuno, M. C. White, J. Am. Chem. Soc. 2016, 138, 1265–1272; f) L.
Ta, A. Axelsson, H. Sunden, Green Chem. 2016, 18, 686–690.
[23] D. Posevins, Y. Qiu, J.-E. Bäckvall, J. Am. Chem. Soc. 2018, 140,
3210–3214.
[24] L. Han, T. Liu, Org. Biomol. Chem. 2017, 15, 5055–5061.
[25] a) C. Zhu, B. Yang, Y. Qiu, J.-E. Bäckvall, Angew. Chem. Int. Ed. 2016,
55, 14405–14408; Angew. Chem. 2016, 128, 14617–14620; b) Y. Qiu,
B. Yang, C. Zhu, J.-E. Bäckvall, Chem. Sci. 2017, 8, 616–620.
[26] In the absence of ArB(OH)2, no product was obtained. The Int-V could
not be detected because a fast trapping of Int-V by ArB(OH)2 occurs
and generates the corresponding cyclic tetraene.
[27] In addition to facilitate electron transfer from the reduced palladium
catalyst to O2, we speculate the quinone moiety of the oxidized
Co(salophen)-HQ can act as a ligand that coordinates to the Pd(II)
intermediate during the catalysis. Quinone coordination to Pd(II) could
withdraw electron density from the Pd(II) center, therefore promoting
the subsequent reductive elimination step.
[13] a) H. Grennberg, S. Faizon, J.-E. Bäckvall, Angew. Chem., Int. Ed. Engl.
1993, 32, 263–264; Angew. Chem. 1993, 105, 269–271; b) B. W. Purse,
This article is protected by copyright. All rights reserved.