A. Maspero et al. / Journal of Fluorine Chemistry 139 (2012) 53–57
57
[5] (a) V. Colombo, S. Galli, H.J. Choi, G.D. Han, A. Maspero, G. Palmisano, N. Mas-
ciocchi, J.R. Long, Chemical Science 2 (2011) 1311–1319;
(b) E. Quartapelle Procopio, F. Linares, C. Montoro, V. Colombo, A. Maspero, E.
Barea, J.A.R. Navarro, Angewandte Chemie International Edition 49 (2010) 7308–
7311;
d
= ꢂ61.2 (s). IR: 3429 (w), 3399 (w), 3152 (s), 1604 (s), 1336 (s),
1307 (s), 1292 (s), 1145 (vs), 978 (s) cmꢂ1. UV (EtOH): lmax
(log ) = 250 nm (3.20). GC MS: (tR 12.89 min). Anal. Calcd for
e
C5H3F6N3: C, 27.41; N, 19.18. Found: C, 27.29; N, 19.11. pKa 8.13. Rf
(silica) = 0.72 (EtOAc-hexane, 4:1). Mp 131 8C.
(c) N. Masciocchi, S. Galli, V. Colombo, A. Maspero, G. Palmisano, B. Seyyedi, C.
Lamberti, S. Bordiga, Journal of the American Chemical Society 132 (2010) 7902–
7904.
[6] For recent contribution in the synthesis of trifluoromethyl pyrazole derivatives,
see: I.G. Gerus, R.X. Mironetz, I.S. Kondratov, A.I. Bezdudny, Y.V. Dmytriv, O.V.
Shishkin, V.S. Starova, O.A. Zaporezhets, A.A. Tolmachev, P.V. Mykhailiuk, Journal
of Organic Chemistry, 77 (2012) 47–56.
Acknowledgements
The present work was generously supported by Ministero
[7] (a) S. Trofimenko, Chemical Reviews 75 (1972) 497–509;
(b) S. Trofimenko, Chemical Reviews 93 (1993) 943–980.
[8] See: J. Elguero, in: A.R. Katritzky, C.W. Rees (Eds.), Comprehensive Heterocyclic
Chemistry, vol. 5, Pergamon Press, Oxford, 1984, pp. 167–334.
[9] (a) O. Renn, L.M. Venanzi, A. Marteletti, V. Gramlich, Helvetica Chimica Acta 78
(1995) 993–1000;
`
dell’Istruzione, dell’Universita e della Ricerca (PRIN 2008) (prot
2008M3Y5WX) (Ottimizzazione della sintesi di molecole eterocicliche
e carbocicliche mediante l’uso di procedure non convenzionali). The
reviewers’ comments contributed to a significant improvement of
the manuscript.
For other preparations of 2, see:
(b) P.P.K. Claire, P.L. Coe, C.J. Jones, J.A. McCleverty, Journal of Fluorine Chemistry
51 (1991) 283–289;
Appendix A. Supplementary data
(c) M.D. Threadgill, A.K. Heer, B.G. Jones, Journal of Fluorine Chemistry 65 (1993)
21–23;
(d) D.H. O’Brien, C.-P.J. Hrung, Journal of Organometallic Chemistry 27 (1971)
185–193.
[10] (a) S.P. Singh, D. Kumar, B.G. Junes, M.D. Threadgill, Journal of Fluorine Chemistry
94 (1999) 199–203;
(b) J. Elguero, G.I. Yranzo, Journal of Chemical Research (S) (1990) 120.
[11] D. Obermayer, T.N. Glasnov, C.O. Kappe, Journal of Organic Chemistry 76 (2011)
6657–6669.
[12] See: I. Aikorta, J. Elguero, B. Donnadieu, M. Etienne, J. Jaffart, D. Schagen, H.-H.
Limbach, New Journal of Chemistry, 23 (1999) 1231–1237, Actually, on the basis
of its value of vapour pressure, 2 can be classified as a medium volatility organic
compound (MVOC) exerting a vapour pressure @ STP conditions in the 266.6 Pa to
10.66 kPa range..
Supplementary data associated with this article can be found,
References
[1] For selected references, see:
(a) A.J. Elliott, in: M. Hudlicky, A.E. Pavlath (Eds.), Chemistry of Organic Fluorine
Compounds. A Critical Review, ACS Monograph No. 187, American Chemical
Society, Washington, DC, 1995;
(b) T. Hiyama, in: H. Yamamoto (Ed.), Organofluorine Compounds. Chemistry and
Applications, Springer, New York, 2000;
(c) F. Leroux, P. Jeschke, M. Schlosser, Chemical Reviews 105 (2005) 827–856;
(d) E.R. Larsen, Fluorine Chemistry Reviews 3 (1969) 1–44;
(e) S. Purser, P.R. Moore, S. Swallow, V. Gouverneur, Chemical Society Reviews 37
(2008) 320–330;
[13] Hexafluoroacetylacetone (98+%) is also commercially available (Sigma Aldrich) at
209s/25 g.
[14] K.P.C. Vollhardt, N.E. Schore, Organic Chemistry. Structure and Function, Freeman
& Co., New York, 2010.
[15] See, for example:
D.E. Butler, B.P.H. Poscher, J.G. Marriott, Journal of Medicinal Chemistry 24 (1981)
346–350, and references cited;
(f) R. Berger, G. Resnati, P. Metrangolo, E. Weber, J. Hulliger, Chemical Society
Reviews 40 (2011) 3496–3508.
With trifluoromethyl substituted azoles, considerable caution must be also
exercised in using bases, see:
[2] (a) D.H. McDaniel, H.C. Brown, Journal of Organic Chemistry 23 (1958) 420–427;
(b) H.C. Brown, Y. Okamoto, Journal of the American Chemical Society 80 (1958)
4979–4987;
(c) W.A. Sheppard, Journal of the American Chemical Society 87 (1965) 2410–
2420.
[3] (a) S.L. James, Chemical Society Reviews 32 (2003) 276–288;
(b) J.L.C. Rowsell, O.M. Yaghi, Microporous and Mesoporous Materials 73 (2004)
3–14;
T. Kitazume, T. Ohuogi, Synthesis (1988) 614–615.
[16] To the best of our knowledge, there is only one literature report of a chlorination
of 2, but all attempts to isolate pure 4 according this patented procedure have as
yet been unsuccessful: A.M.K. Pennell, J.B. Aggen, J.J. Kim, S. Subhabrata, B.E.
McMaster, D.J. Duraghi, US Patent 2,004,162,282(A1), 2004.
[17] TCIA has been used in the presence of Brønsted-acidic imidazolium ionic liquid
[BMIM(SO3H)][OTf], see: A. Hubbard, T. Okazaki, K.K. Laail, Australian Journal of
Chemistry, 60 (2007) 923–927.
(c) A.U. Czaja, N. Trukhan, U. Mu¨ ller, Chemical Society Reviews 38 (2009) 1284–
1293;
[18] G.A. Olah, G.S.K. Prakash, J. Sommer, Superacids, Wiley Interscience, New York,
1985.
(d) L.J. Murray, M. Dinca˘, J.R. Long, Chemical Society Reviews 38 (2009) 1294–
1314;
(e) D. Farruseng, Metal-Organic Frameworks: Applications from Catalysis to Gas
Storage, Wiley VCH, Weinheim, 2011;
[19] (a) A. Growiss, Organic Process Research & Development 4 (2000) 30–33;
(b) J.J. Harrison, J.P. Pellegrini, C.M. Selwitz, Journal of Organic Chemistry 46
(1981) 2169–2171.
[20] For superelectrophilic iodonium species, see:
(f) F.A. Almeida Paz, J. Klinowski, S.M.F. Vilela, J.P.C. Tome´, J.A.S. Cavaleiro, J.
(g) J. Sculley, D. Yuan, H.-C. Zhou, Energy & Environmental Science 4 (2011)
2721–2735.
(a) G.S.K. Prakash, T. Mathew, D. Hoole, P.M. Esteves, Q. Wang, G. Rasul, G.A. Olah,
Journal of the American Chemical Society 126 (2004) 15570–15576;
(b) V.K. Chaikovskii, V.D. Filimonov, A.A. Funk, Russian Journal of Organic Chem-
istry 45 (2009) 1349–1352;
[4] (a) P. Pachfule, C. Dey, T. Panda, K. Vanka, R. Banerjee, Crystal Growth & Design 10
(2010) 1351–1363;
(c) J. Arotsky, R. Butler, A.C. Darby, Journal of the Chemical Society (C) (1970)
1480–1485.
(b) P. Pachfule, C. Dey, T. Panda, R. Banerjee, CrystEngCommun 12 (2010) 1600–
1609;
(c) Z. Hulvey, D.S. Wragg, Z. Lin, R.E. Morris, A.K. Cheetham, Dalton Transactions
(2009) 1131–1135;
(d) Z. Hulvey, E.H.L. Falcao, J. Eckert, A.K. Cheetham, Journal of Materials Chem-
istry 19 (2009) 4307–4309;
(e) H. Chun, D.N. Dybtsev, H. Kim, K. Kim, Chemistry – A European Journal 11
(2005) 3521–3529;
[21] For a review on C–F bond formation for the synthesis of aryl fluorides, see:
(a) T. Furuya, J.E.M.N. Klein, T. Ritter, Synthesis (2010) 180;
(b) B. Langlois, L. Gilbert, G. Forat, Fluorination of Aromatic Compounds by
Halogen Exchange with Fluoride Anions (HalEx Reaction), Industrial Chemical
Library, vol. 8, Elsevier, Amsterdam, 1996.
[22] J.C. Sloop, C.L. Bumgardner, W.D. Loehle, Journal of Fluorine Chemistry 118 (2002)
135–147.
[23] J. Elguero, A. Fruchier, N. Jagerovic, A. Werner, Organic Preparations and Proce-
dures International 27 (1995) 33–74.
(f) B.V. Harburazu, A. Corma, F. Rey, P. Atienzar, J.L. Jorda, H. Garcia, D. Ananias,
L.D. Carlos, J. Rocha, Angewandte Chemie International Edition 47 (2008) 1080–
1083;
[24] P. Imming, R. Mohr, E. Muller, W. Overheu, G. Seitz, Angewandte Chemie Inter-
national Edition 94 (1982) 291.
(g) R.Q. Zhong, R.Q. Zou, M. Du, T. Yamada, G. Maruta, S. Takeda, Q. Xu, Dalton
Transactions (2008) 2346–2354.
[25] J. Elguero, G.I. Yranzo, J. Laynez, P. Jimenez, M. Menendez, J. Catalan, J.L.G. De Paz,
F. Anvia, R.W. Taft, Journal of Organic Chemistry 56 (1991) 3942–3947.