10.1002/chem.201700995
Chemistry - A European Journal
FULL PAPER
[6]
[7]
Silicon based FLPs: a) M. Reißmann, A. Schäfer, S. Jung, T. Müller,
Organometallics 2013, 32, 6736–6744; b) A. Schäfer, M. Reißmann, A.
Schäfer, M. Schmidtmann, T. Müller, Chem. Eur. J. 2014, 20, 9381–
9386. c) B. Waerder, M. Pieper, L. A. Körte, T. A. Kinder, A. Mix, B.
Neumann, H.-G. Stammler, N. W. Mitzel Angew. Chem. Int. Ed. 2015,
54, 13416 – 13419. d) Z. Dong, Z. Li, X. Liu, C. Yan, N. Wei, M. Kira, T.
Müller Chem. Asian J. 2017, DOI 10.1002/asia.201700143.
a) R. Panisch, M. Bolte, T. Müller, J. Am. Chem. Soc. 2006, 128, 9676 -
9682. b) N. Lühmann, H. Hirao, S. Shaik, T. Müller, Organometallics
2011, 30, 4087. c) N. Lühmann, R. Panisch, T. Müller, Appl. Organomet.
Chem. 2010, 24, 533. d) N. Kordts, C. Borner, R. Panisch, W. Saak, T.
Müller Organometallics 2014, 33, 1492 -1498.
d, f (Ch = S, Se, Te) show the expected trigonal pyramidal
coordination environment for the chalcogen atom (Scheme 3). In
these cases, variable temperature NMR investigations and two
dimensional exchange spectroscopy (EXSY) indicate an
inversion process of the trigonal pyramidal coordinated chalcogen
atom, similar to related processes in isoelectronic phosphanes
and arsanes.
Although borates of the synthesized cations are stable
compounds in the absence of moisture and air, they are highly
reactive. They catalyze HDF reactions of alkyl fluorides with
silanes with TON between 13 and 124. For the activation process,
we suggest a cooperative activation of the silane by the Lewis-
basic chalcogen center and the Lewis acidic silyl group (Scheme
7).
[8]
[9]
R. Alder, Chem. Rev. 1989, 89, 1215.
H. E. Katz, J. Am. Chem. Soc. 1985, 107, 1420.
[10] a) H. Zhao, F. P. Gabbaï, Nat. Chem. 2010, 2, 984. b) H. Zhao, F. P.
Gabbaï, Org. Lett. 2011, 13, 1444. c) H. Zhao, F. P. Gabbaï,
Organometallics 2012, 31, 2327.
[11] a) J. Beckmann, T. G. Do, S. Grabowsky, E. Hupf, E. Lork, S. Mebs, Z.
Anorg. Allg. Chem. 2013, 639, (12-13), 2233. b) E. Hupf, E. Lork, S. Mebs,
J. Beckmann, Organometallics 2014, 33, 2409. c) E. Hupf, E. Lork, S.
Mebs, L. Cheçińska, J. Beckmann, Organometallics 2014, 33, 7247. d)
T. G. Do, E. Hupf, A. Nordheider, E. Lork, A. M. Z. Slawin, S. G. Makarov,
S. Y. Ketkov, S. Mebs, J. D. Wollins, J. Beckmann, Organometallics 2015,
34, 5341. e) F. R. Knight, A. L. Fuller, M. Bühl, A. M. Z. Salwin, J. D.
Wollins, Chem. Eur. J. 2010, 16, 7503. f) M. Bühl, F. R. Knight , A.
Křístová, I. Malkin Ondik, O. L. Malkina, R. A. M. Randall, A. M. Z. Slawin,
J. D. Wollins, Angew. Chem. Int. Ed. 2013, 52, 2495. g) K. S. Athukorala.
Arachchige, P. Sanz Camacho, M. J. Ray, B. A. Chalmers, F. R. Knight,
S. E. Ashbrook, M. Bühl, P. Kilian, A. M. Z. Slawin, J. D. Wollins,
Organometallics 2014, 33, 2424. h) E. Hupf, E. Lork, S. Mebs, J.
Beckmann, Organometallics 2015, 34, 3873 – 3887. i) A. Nordheider, E.
Hupf, B. A. Chalmers, F. R. Knight, M. Bühl, S. Mebs, L. Checinska, E.
Lork, P. S. Camacho, S. E. Ashbrook, K. S. Athukorala Arachchige, D. B.
Cordes, A. M. Z. Salwin, J. Beckmann, J. D. Woollins Inorg. Chem. 2015,
54, 2435 – 2446.
Acknowledgements
This
work
was
supported
by
the
Deutsche
Forschungsgemeinschaft (DFG-Mu1440/12-1) and by the Carl
von Ossietzky University Oldenburg. The simulations were
performed at the HPC Cluster HERO (High End Computing
Resource Oldenburg), located at the University of Oldenburg
(Germany) and funded by the DFG through its Major Research
Instrumentation Program (INST 184/108-1 FUGG) and the
Ministry of Science and Culture (MWK) of the Lower Saxony State.
Keywords: silicon • chalcogens • cations • NMR • X-ray
diffraction • bond activation
[12] a) Y.-F. Li, Y. Kang, S.-B. Ko, Y. Rao, F. Sauriol, S. Wang,
Organometallics 2013, 32, 3063. b) S. Bontemps, M. Devillard, S. Mallet-
Ladeira, G. Bouhadir, K. Miqueu, D. Bourissou, Inorg. Chem. 2013, 52,
4714. c) J. Beckmann, E. Hupf, E. Lork, S. Mebs, Inorg. Chem. 2013, 52,
11881.
[1]
Recent reviews a) T. Müller, Silylium Ions in Struct. Bond, 155, Vol. Ed.
D. Scheschkewitz 2014, 107; b) T. Müller, Silylium ions and stabilized
silylium ions in Science of Synthesis, Knowledge updates 2013/3, Vol.
ed. M. Oestreich, G. Thieme Verlag KG, Stuttgart, 2013, 1. c) A.
Sekiguchi, V. Y. Lee, Organometallic compounds of low-coordinate Si,
Ge, Sn and Pb, 2010, Wiley, Chichester.
[13] a) C. Breliere, F. Carre, R. J. P. Corriu, W. E. Douglas, M. Poirier, G.
Royo, M. W. Chi Man Organometallics 1992, 11, 1586 – 1593. b) D. Pa,
O. Sadek, S. Cadet, D. Mestre-Voegtle, E. Gras, Dalton Trans., 2015, 44,
18340 - 18346.
[2]
[3]
a) H. F. T. Klare, M. Oestreich, Dalton Trans. 2010, 39, 9176. b) T. Stahl,
H. F. T. Klare, M. Oestreich, ACS Catal. 2013, 3, 1578−1587.
Lewis acidity of silylium ions a) H. Großekappenberg, M. Reißmann, M.
Schmidtmann, T. Müller, Organometallics 2015, 34, 4952 – 4958. b) H.
Großekappenberg, M. Reißmann, M. Schmidtmann, T. Müller,
Organometallics 2015, 34, 5496 – 5496. c) G. Hilt, A. R. Nödling, Eur. J.
Org. Chem. 2011, 2011, 7071 − 7075; d) A. R. Nödling, K. Müther, V. H.
Rohde, G. Hilt, M. Oestreich, Organometallics 2014, 33, 302 − 308¸ e) K.
Müther, P. Hrobaŕik, V. Hrobaŕiková, M. Kaupp, M. Oestreich, Chem. -
Eur. J. 2013, 19, 16579 − 16594.
[14] a) P. Wawrzyniak, A. L. Fuller, A. M. Z. Slawin, P. Kilian, Inorg. Chem.
2009, 48, 2500 – 2506; b) B. A. Surgenor, M. Bühk, A. M. Z. Slawin, J.
D. Woollins, P. Kilian Angew. Chem. Int. Ed. 2012, 51, 10150 – 10153.
c)M. H. Holthausen, R. R. Hiranandani, D. W. Stephan, Chem. Sci., 2015,
6, 2016 -2021.
[15] a) A. Toshimitsu, S. Hirao, T. Saeki, M. Asahara, K. Tamao, Heteroat.
Chem. 2001, 12, 392 ; b) T. Saeki, A. Toshimitsu, K. Tamao,
Organometallics 2003, 22, 3299 – 3303.
[4]
[5]
S. Duttwyler, Q.-Q. Do, A. Linden, K. K. Baldridge, J. S. Siegel, Angew.
Chem. Int. Ed. 2008, 47, 1719. b) P. Romanato, S. Duttwyler, A. Linden,
K. K. Baldridge J. S. Siegel, J. Am. Chem. Soc. 2010, 132, 7828. c) P.
Romanato, S. Duttwyler, A. Linden, K. K. Baldridge J. S. Siegel, J. Am.
Chem. Soc. 2011, 133, 11844.
[16] a) V. H. G. Rohde, P. Pommerening, H. F. T. Klare, M. Oestreich,
Organometallics 2014, 33, 3618 – 3238 ; b) V. H. G. Rohde, M. F. Müller,
M. Oestreich Organometallics 2015, 34, 3358
– 3373 ; c) P.
Shaykhutdinova, M. Oestreich, Organometallics 2016, 35, 2768 – 2771.
[17] P. Ducos, V. Liautard, F. Robert, Y. Landais, Chem. Eur. J. 2015, 21,
1157.
Recent reviews a) G. Erker, D. W. Stephan, Frustrated Lewis Pairs I:
Uncovering and Understanding. Top. Curr. Chem., Springer GmbH,
Berlin, 2013, pp. 1-350. b) G. Erker, D. W. Stephan, Frustrated Lewis
Pairs II: Expanding The Scope. Top. Curr. Chem., Springer GmbH, Berlin,
2013, pp.1-317. c) D. W. Stephan, G. Erker, Chem. Sci. 2014, 5, 2625–
2641; d) D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2015, 54,
6400–6441.
[18] U.-H. Berlekamp, P. Jutzi, A. Mix, B. Neumann, H.-G. Stammler, W. W.
Schoeller Angew. Chem. Int. Ed. 1999, 38, 2048 – 2050.
[19] R. Ghorbani-Vaghei, S. Hemmati, H. Veisi, Tetrahedron Lett. 2013, 54,
7095.
[20] L. K. Aschenbach, F. R. Knight, R. A. M. Randall, D. B. Cordes, A. Bagott,
M. Bühl, A. M. Z. Slawin, J. D. Woollins, Dalton Trans. 2012, 41, 3141 –
3153.
This article is protected by copyright. All rights reserved.