3
the resulting pseudo-benzylic acid with the indole double bond.
Thus, treatment of diester 12a with 50% aq NaOH in
ethanol/water gave the corresponding diacid 13a in 61% yield
(Scheme 4). As expected and in analogy to β-ketoacids, simply
in modest yield. 16 could also be conveniently obtained from
14a via a one pot de-methylation/re-esterification procedure
using excess BBr3 and quenching of the resulting reaction
mixture with ethanol.16
In summary, we have developed a new entry into the 1,2,3,4-
tetrahydrocyclopenta[b]-indol-3-yl core by utilizing a Fischer
indolization of geminally substituted cyclopentanone derivatives
followed by a pseudo-benzylic decarboxylation of the resulting
acids. Furthermore, we demonstrate that substituents at the 3- and
7-positions can, for example, be useful synthetic handles for
further functionalization. We are now evaluating the asymmetric
version of the pseudo-benzylic decarboxylation step and general
applicability of this methodology.
Acknowledgments
We would like to thank Arena Pharmaceuticals, Inc. for the
generous support of our studies.
References and notes
1. Bronner, S M.; Im, G.-Y. J.; Garg, N. K. Indoles and Indolizidines
In Heterocycles in Natural Product Synthesis; Majumdar, K. C.
and Chattopadhyay, S. K., Eds.; Wiley-VCH Verlag & Co. KGaA,
Weinheim, 2011; pp 221–265 and references therein.
2. Taber, D. F.; Tirunahari, P. K. Tetrahedron 2011, 67, 7195-7210
and references therein.
Scheme 4. (i) 50% aq NaOH, EtOH/H2O then 6 N HCl. (ii) AcOH,
60 °C.
3. Jones, R. XXIII International Symposium on Medicinal
Chemistry, Lisbon, Portugal – September 7-11, 2014.
heating 13a in acetic acid resulted in smooth decarboxylation to
the corresponding tricycle 14a.13 Similarly, 12b gave after
hydrolysis (13b) and decarboxylation the corresponding acid 14b
in 55% overall yield.
4. (a) Joule, J. A.; Mills, K.; Smith, G. F. In Heterocyclic Chemistry,;
Chapman & Hall , London, 1995; Third Ed., pp305-349. (b)
Gilchrist, G. L. In Heterocyclic Chemistry, Longman Scientific &
Technical, Essex, 1992; Second Ed., pp223-236. (c) Davies, D. T.
In Aromatic Heterocyclic Chemistry; Davies, S. G., Ed.; Oxford
University Press, Oxford, 1992; pp 53-60.
Fischer re-esterification of 14a,b and 15 to 4a,b and 16,
respectively, was easily achieved via refluxing the corresponding
acids in ethanol with a catalytic amount of sulfuric acid (Scheme
5). Acid catalyzed reaction with other alcohols also succeeded
5. Garrido Montalban, A.; Baum, S. M.; Cowell, J.; McKillop, A.
Tetrahedron Lett. 2012, 53, 4276-4279.
6. Sturino, C. F.; O’Neill, G.; Lachance, N.; Boyd, M.; Berthelette,
C.; Labelle, M.; Li, L.; Roy. B.; Scheigetz, J.; Tsou, N.; Aubin,
Y.; Bateman, K. P.; Chauret, N.; Day, S. H.; Lévesque, J.-F.; Seto,
C.; Silva, J. H.; Trimble, L. A.; Carriere, M.-C.; Denis, D.; Greig,
G.; Kargman, S.; Lamontagne, S.; Mathieu, M.-C.; Sawyer, N.;
Slipetz, D.; Abraham, W. M.; Jones, T.; McAuliffe, M.; Piechuta,
H.; Nicoll-Griffith, D. A.; Wang, Z.; Zamboni, R.; Young, R. N.;
Metters, K. M. J. Med. Chem. 2007, 50, 794-806 and references
therein.
7. Conde Ceide, S.; Garrido Montalban, A. Tetrahedron Lett. 2006,
47, 4415-4418.
8. Buzard, D. J.; Kim, S. H.; Lopez, L.; Kawasaki, A.; Zhu, X.;
Moody, J.; Thorensen, L.; Calderon, I.; Ullman, B.; Han, S.;
Lehmann, J.; Gharbaoui, T.; Sengupta, D.; Calvano, L.; Garrido
Montalban, A.; Ma, Y.-A.; Sage, C.; Gao, Y.; Semple, G.;
Edwards, J.; Barden, J.; Morgan, M.; Chen, W.; Usmani, K.;
Chen, C.; Sadeque, A.; Christopher, R. J.; Thatte, J.; Fu, L.;
Solomon, M.; Mills, D.; Whelan, K.; Al-Shamma, H.; Gatlin, J.;
Le, M.; Gaidarov, I.; Anthony, T.; Unett, D. J.; Blackburn, A.;
Rueter, J.; Stirn, S.; Behan, D. P.; Jones, R. M. Med. Chem. Lett.
20014, in press.
9. Sturino, C. F.; Lachance, N.; Boyd, M.; Berthelette, C.; Labelle,
M.; Li, L.; Roy, B.; Scheigetz, J.; Tsou, N.; Brideau, C.; Cauchon,
E.; Carriere, M.-C.; Denis, D.; Greig, G.; Kargman, S.;
Lamontagne, S.; Mathieu, M.-C.; Sawyer, N.; Slipetz, D.; O’Neill,
G.; Wang, Z.; Zamboni, R.; Metters, K. M.; Young, R. N. Bioorg.
Med. Chem. Lett. 2006, 16, 3043-3048.
Scheme 5. (i) EtOH, H2SO4 (0.6 equiv), reflux. (ii) 3 equiv BBr3,
+
-
CH2Cl2, -5 to 0 °C or EtOH/H2O, NH4 HCO2 , 10% Pd/C, 40 °C.
(iii) 3 equiv BBr3, CH2Cl2, -5 to 0 °C then EtOH, 40 °C.
10. Hughes, D. L.; Zhao, D. J. Org. Chem. 1993, 58, 228-233.
11. Kadas, I.; Morvai, V.; Arvai, G.; Toke, L.; Szollosy, A.; Toth, G.;
Bihari, M. Monatshefte fuer Chemie 1995, 126, 107-117.
12. Procedure for the preparation of indole derivative 12a: To a
suspension of (4-methoxyphenyl)hydrazine hydrochloride (379.5
g, 2.17 mol) and ethyl 1-(2-ethoxy-2-oxoethyl)-2-oxocyclopenta-
necarboxylate (526 g, 2.17 mol) in EtOH (2.0 L) AcOH (131 g,
124 mL, 2.17 mol) was added and the mixture stirred at 75 °C for
18 h under N2. The fine dark brown suspension was allowed to
cool and neutralized with saturated aqueous NaHCO3. The solvent
was evaporated under reduced pressure, the brown oily residue
neat or by using solvents such as chloroform or toluene. De-
methylation of 14a, on the other hand, was best achieved with
BBr3 whereas transfer hydrogenation14 of 14b using ammonium
formate in the presence of palladium-on-carbon (10% Pd/C) gave
the same product 15 without significant reduction of the indole to
the indoline.15 De-methylation of 4a or de-benzylation of 4b
using the respective conditions described above, gave indole 16