212
F. Shi et al. / Applied Catalysis A: General 433–434 (2012) 206–213
␣-MnO2 and flower-like -MnO2 catalyst outperforming the
dumbbell-like -MnO2 catalyst. Under the conditions of toluene
concentration = 1000 ppm, toluene/O2 molar ratio = 1/400, and
SV = 20,000 mL/(g h), the T90% value was 238, 229, and 241 ◦C
over rod-like ␣-MnO2, flower-like -MnO2, and dumbbell-like
-MnO2, respectively. The apparent activation energies of the
rod-like ␣-MnO2, flower-like -MnO2, and dumbbell-like -MnO2
catalysts were in the range of 20–26 kJ/mol. It is concluded that
the higher oxygen adspecies concentrations and better low-
temperature reducibility were the main factors responsible for the
better catalytic performance of the rod-like ␣-MnO2, flower-like
-MnO2, and dumbbell-like -MnO2 materials for the combustion
of toluene.
-1
-2
-3
-4
-5
-6
ulk MnO2
E
ꢀ
rod-like -MnO
α
2
Ⴗ
Ⴃ
flower-like -MnO
ε
2
dumbbell-like -MnO
β
2
Acknowledgments
1.5
2
2.5
3
3.5
The work described above was supported by the NSF of Beijing
Municipality (Grant No. 2102008), the NSF of China (Grant Nos.
20973017 and 21077007), the National High-Tech Research and
Development (863) Program of China (Grant No. 2009AA063201),
the Creative Research Foundation of Beijing University Technol-
ogy (Grant Nos. 00500054R4003 and 005000543111501), and the
Funding Project for Academic Human Resources Development
in Institutions of Higher Learning under the Jurisdiction of Bei-
jing Municipality (Grant Nos. PHR201007105 and PHR201107104).
CTAU thanks the Foundation of the Hong Kong Baptist University
(Grant No. FRG2/09-10/023) for financial support. We also thank
Mrs. Jianping He (State Key Laboratory of Advanced Metals and
Materials, University of Science & Technology Beijing) for doing the
SEM analysis.
1000/T (K-1)
Fig. 6. Arrhenius plots for total oxidation of toluene on the rod-like ␣-MnO2, flower-
like -MnO2, dumbbell-like -MnO2, and bulk-MnO2 catalysts.
over the ceria-zirconia-supported LaCoO3 catalyst [48]. Therefore,
it is reasonable to assume that the oxidation of toluene in the pres-
ence of excess oxygen (toluene/O2 molar ratio = 1/400) would obey
a first-order reaction mechanism with respect to toluene concen-
tration (c):
ꢁ
−Ea
r = −kc = −A exp
c
RT
where r is the reaction rate (mol/s), k the rate constant (s−1), A
the pre-exponential factor, and Ea the apparent activation energy
(kJ/mol). The k values could be calculated from the reaction rates
and reactant conversions at different SV and reaction temperatures.
Fig. 6 shows the Arrhenius plots for the oxidation of toluene at
toluene conversion <30% (at which the reaction temperature range
dumbbell-like -MnO2 catalysts and 150–240 ◦C for the bulk-MnO2
catalyst). According to the slopes of the Arrhenius plots, one can
calculate the rate constants, pre-exponential factors, and appar-
ent activation energies of toluene oxidation over these catalysts,
as summarized in Table 2. The Ea value (74.3 kJ/mol) of the bulk-
MnO2 catalyst was much higher than those (19.6–26.1 kJ/mol) of
the ␣-, -, and -MnO2 catalysts, with the rod-like ␣-MnO2 catalyst
exhibiting the lowest Ea value (19.6 kJ/mol). The Ea values obtained
over the ␣-, -, and -MnO2 catalysts for toluene oxidation were
much lower than those (73–89 kJ/mol) over the MxFe3−xO4 (M = Ni,
Mn; x = 0.5–0.65) catalysts [49], those (51–79 kJ/mol) over the
10–20 wt.% LaCoO3/Ce1−xZrxO2 (x = 0–0.2) catalysts [48], and that
(62 kJ/mol) over the 7 wt.% Pt/16 wt.% Ce0.64Zr0.15Bi0.21O1.895/␥-
Al2O3 catalyst [1]. All of the results explain why the ␣-, -, and
-MnO2 catalysts performed excellently in catalyzing the complete
oxidation of toluene at low temperatures.
Appendix A. Supplementary data
Supplementary data associated with this article can be
j.apcata.2012.05.016.
References
[1] T. Masui, H. Imadzu, N. Matsuyama, N. Imanaka, J. Hazard. Mater. 176 (2010)
1106–1109.
[2] V.P. Santos, S.A.C. Carabineiro, P.B. Tavares, M.F.R. Pereira, J.J.M. Órfão, J.L.
Figueiredo, Appl. Catal. B 99 (2010) 198–205.
[3] B. Solsona, T.E. Davies, T. Garcia, I. Vázquez, A. Dejoz, S.H. Taylor, Appl. Catal. B
84 (2008) 176–184.
[4] C. Lahousse, A. Bernier, E. Gaigneaux, P. Ruiz, P. Grange, B. Delmon, Stud. Surf.
Sci. Catal. 110 (1997) 777–785.
[5] T.K. Tseng, H. Chu, H.H. Hsu, Environ. Sci. Technol. 37 (2003) 171–176.
[6] H. Rotter, M.V. Landau, M. Herskowitz, Environ. Sci. Technol. 39 (2005)
6845–6850.
[7] F. Wyrwalski, J.F. Lamonier, S. Siffert, A. Aboukaïs, Appl. Catal. B 70 (2007)
393–399.
[8] C. Lahousse, A. Bernier, P. Grange, B. Delmon, P. Papaefthimiou, T. Ioannides, X.
Verykios, J. Catal. 178 (1998) 214–222.
[9] M.A. Peluso, J.E. Sambeth, H.J. Thomas, React. Kinet. Catal. Lett. 80 (2003)
241–248.
[10] L. Lamaita, M.A. Peluso, J.E. Sambeth, H.J. Thomas, Appl. Catal. B 61 (2005)
114–119.
[11] L. Lamaita, M.A. Peluso, J.E. Sambeth, H.J. Thomas, G. Mineli, P. Porta, Catal.
Today 107/108 (2005) 133–138.
4. Conclusions
[12] M.A. Peluso, E. Pronsato, J.E. Sambeth, H.J. Thomas, G. Busca, Appl. Catal. B 78
(2008) 73–79.
[13] J.Q. Torres, J.-M. Giraudon, J.-F. Lamonier, Catal. Today 176 (2011) 277–280.
[14] V.P. Santos, M.F.R. Pereira, J.J.M. Órfão, J.L. Figueiredo, Top. Catal. 52 (2009)
470–481.
[15] L. Zhou, J.H. He, J. Zhang, Z.C. He, Y.C. Hu, C.B. Zhang, H. He, J. Phys. Chem. C 115
(2011) 16873–16878.
[16] L. Zhou, J. Zhang, J.H. He, Y.C. Hu, H. Tian, Mater. Res. Bull. 46 (2011) 1714–1722.
[17] S.C. Kim, W.G. Shim, Appl. Catal. B 98 (2010) 180–185.
[18] Y.S. Xia, H.X. Dai, L. Zhang, J.G. Deng, H. He, C.T. Au, Appl. Catal. B 100 (2010)
229–237.
The rod-like tetragonal ␣-MnO2, flower-like hexagonal -MnO2,
and dumbbell-like tetragonal -MnO2 catalysts could be prepared
using the hydrothermal or water-bathing method. Although the
rod-like ␣-MnO2 and flower-like -MnO2 samples displayed a
lower surface area (30–53 m2/g) than the dumbbell-like -MnO2
(ca. 132 m2/g), the form two samples possessed higher oxygen
adspecies concentrations and better low-temperature reducibil-
ity than the latter sample. The rod-like ␣-MnO2, flower-like
-MnO2, and dumbbell-like -MnO2 catalysts showed much
better activities than the bulk-MnO2 catalyst, with the rod-like
[19] Y.S. Xia, H.X. Dai, H.Y. Jiang, J.G. Deng, H. He, C.T. Au, Environ. Sci. Technol. 43
(2009) 8355–8360.