Paper
RSC Advances
6 J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T.
J. Booth and S. Roth, Nature, 2007, 446, 60–63.
7 L. Jia, D. H. Wang, Y. X. Huang, A. W. Xu and H. Q. Yu, J.
Phys. Chem. C, 2011, 115, 11466–11473.
acetaldehyde deposition obviously increased from the 35.9%
of P25 to 63.3%.
8 W. S. Wang, D.-H. Wang, W. G. Qu, L. Q. Lu and A. W. Xu, J.
Phys. Chem. C, 2012, 116, 19893–19901.
9 D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H.
B. Dommett, G. Evmenenko, S. T. Nguyen and R. S. Ruoff,
Nature, 2007, 448, 457–460.
10 S. Stankovich, D. A. Dikin, G. H. B. Dommett, K.
M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S.
T. Nguyen and R. S. Ruoff, Nature, 2006, 442, 282–286.
11 F. C. Krebs, Sol. Energy Mater. Sol. Cells, 2009, 93, 465–475.
12 S. Ito, T. Takeuchi, T. Katayama, M. Sugiyama, M. Matsuda,
T. Kitamura, Y. Wada and S. Yanagida, Chem. Mater., 2003,
15, 2824–2828.
13 J. H. Park, H. K. Kim, H. Lee, S. Yoon and C. D. Kim,
Electrochem. Solid-State Lett., 2010, 13, J53–J56.
14 W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 1958,
80, 1339–1339.
15 W. C. Chao Chen, Mingce Long, Baoxue Zhou, Yahui Wu,
Deyong Wu and Yujie Feng, ACS Nano, 2010, 4, 6425–6432.
16 B. Tang, G. X. Hu and H. Y. Gao, Appl. Spectrosc. Rev., 2010,
45, 369–407.
17 G. Xie, J. Cheng, Y. Li, P. Xi, F. Chen, H. Liu, F. Hou, Y. Shi,
L. Huang, Z. Xu, D. Bai and Z. Zeng, J. Mater. Chem., 2012,
22, 9308–9314.
4. Conclusions
In summary, we found that the nanoTiO2 and rGO will help
overcome the shortcomings of one another. Negatively
charged nanoTiO2 particles will obviously enhance the disper-
sion of rGO in solvents and rGO will effectively improve the
poor connection between low-temperature synthesized
nanoTiO2 particles and the substrate when it was deposited
on the substrate to make a photoelectric film.
The stable nanoTiO2–rGO colloid was successfully synthe-
sized at a low temperature (95 uC). The colloid could be stable
for at least 6 months and adapted for the spraying/printing/
brushing film-forming technology in industry. Ultrathin and
transparent nanoTiO2–rGO films on ITO-PET were also
fabricated using this stable colloid. Adding the proper quantity
of rGO could effectively increase the photocurrent to 4.8 times
that of the photocurrent generated by pure nanoTiO2. The as-
prepared transparent flexible film can be shaped into
triangular calandrias to make full use of the incident UV
light, and thus increase the removal efficiency from the pass
through of gas-phase acetaldehyde.
18 O. Akhavan and E. Ghaderi, J. Phys. Chem. C, 2009, 113,
20214–20220.
19 Y. Choi, T. Umebayashi and M. Yoshikawa, J. Mater. Sci.,
2004, 39, 1837–1839.
20 J. Yang, H. Bai, X. Tan and J. Lian, Appl. Surf. Sci., 2006,
253, 1988–1994.
21 X. Wang, S. Meng, X. Zhang, H. Wang, W. Zhong and
Q. Du, Chem. Phys. Lett., 2007, 444, 292–296.
22 H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, ACS Nano, 2009, 4,
380–386.
Acknowledgements
The authors are grateful to the National Natural Science
Foundation of China (20973110), the National Key Basic
Research and Development Program (2009CB220000) and the
International Cooperation Project of Shanghai Municipal
Science and Technology Commission (12160705700).
23 Y. Zhang, Z. R. Tang, X. Fu and Y. J. Xu, ACS Nano, 2010, 4,
7303–7314.
24 C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu and
Y. Feng, ACS Nano, 2010, 4, 6425–6432.
25 S. Sun, L. Gao and Y. Liu, Appl. Phys. Lett., 2010, 96, 083113.
26 G. Williams, B. Seger and P. V. Kamat, ACS Nano, 2008, 2,
1487–1491.
27 Y. B. Tang, C. S. Lee, J. Xu, Z. T. Liu, Z. H. Chen, Z. B. He, Y.
L. Cao, G. D. Yuan, H. S. Song, L. M. Chen, L. B. Luo, H.
M. Cheng, W. J. Zhang, I. Bello and S. T. Lee, ACS Nano,
2010, 4, 3482–3488.
Notes and references
1 F. Pichot, J. R. Pitts and B. A. Gregg, Langmuir, 2000, 16,
5626–5630.
2 N. G. Park, K. M. Kim, M. G. Kang, K. S. Ryu, S. H. Chang
and Y. J. Shin, Adv. Mater., 2005, 17, 2349–2353.
´
´
3 D. Gutierrez-Tauste, I. Zumeta, E. Vigil, M. A. Hernandez-
`
´
Fenollosa, X. Domenech and J. A. Ayllon, J. Photochem.
Photobiol., A, 2005, 175, 165–171.
4 I. V. Lightcap, T. H. Kosel and P. V. Kamat, Nano Lett., 2010,
10, 577–583.
28 D. C. Oertel, M. G. Bawendi, A. C. Arango and V. Bulovic,
Appl. Phys. Lett., 2005, 87, 213505.
5 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim,
J.-H. Ahn, P. Kim, J. Y. Choi and B. H. Hong, Nature, 2009,
457, 706–710.
29 X. Geng, L. Niu, Z. Xing, R. Song, G. Liu, M. Sun, G. Cheng,
H. Zhong, Z. Liu, Z. Zhang, L. Sun, H. Xu, L. Lu and L. Liu,
Adv. Mater., 2010, 22, 638–642.
8564 | RSC Adv., 2013, 3, 8559–8564
This journal is ß The Royal Society of Chemistry 2013