OXYGENATES AND OLEFINS FROM ALKANES
409
The predicted behavior (1) was experimentally observed
REFERENCES
in n-butane oxidation and is shown in Fig. 9a. Assuming
that the chemistry-producing oxygenates is similar for all
higher hydrocarbons, it should also be possible to observe
behaviors like (2) and (3).
To verify this, experiments were performed with n-C5 fuel
with varying dilutions. The results are shown in Figs. 9b
and 9c, and it is seen that the experimental trends do fol-
low those predicted in the simulations. This suggests that
n-C5 oxidation has similar chemistry for oxygenate forma-
tion as that of n-C4 and that N2 dilution can be used as an
important optimization parameter to maximize oxygenate
selectivities.
1. Goetsch, D. A., and Schmidt, L. D., Science 271, 1560 (1996).
2. Goetsch, D. A., Witt, P. M., and Schmidt, L. D., Heterogeneous
Hydrocarbon Oxidation 125 (1996).
3. Iordanoglou, D. I., and Schmidt, L. D., J. Catal. 176, 503 (1998).
4. Sanfilippo, D., 7th Venezuelan Joint Venture Meeting, 1996.
5. Kirk-Othmer, “Encyclopedia of Chemical Technology.” Wiley, New
York, 1993.
6. Hickman, D. A., and Schmidt, L. D., Science 259, 343 (1993).
7. Huff, M., and Schmidt, L. D., J. Phys. Chem. 97, 11815 (1993).
8. Huff, M., and Schmidt, L. D., J. Catal. 149, 127 (1994).
9. Dietz, A., Carlson, A., and Schmidt, L. D., J. Catal. 176, 459 (1998).
10. Satterfield, C. N., “Heterogeneous Catalysis in Industrial Practice.”
McGraw-Hill Inc., New York, 1991.
11. Twigg, M. V., “Catalyst Handbook.” Manson Publishing, Ltd., London,
1996.
5. CONCLUSIONS
12. Cooney, D. O., and Zhenpeng, X., Fuel Sci. Technol. Int. 14, 1315
(1996).
13. Roine, A., “Ver. 1.12, Outokumpu Research Oy, Pori, Finland, 1993.”
14. Warnatz, J., private communication, 1998.
15. Bodke, A. S., Olschki, D., Schmidt, L. D., Bharadwaj, S. S., Siddall, J.,
and Ranzi, E., Science 285, 712 (1999).
16. Chan, K. Y. G., Inal, F., and Senkan, S., Ind. Eng. Chem. Res. 37, 901
(1998).
17. Zhang, W., and Smirniotis, P. G., J. Catal. 182, 400 (1999).
18. Zhao, Y. X., and Wojciechowski, B. W., J. Catal. 163, 365 (1996).
19. Zhao, Y. X., and Wojciechowski, B. W., J. Catal. 163, 374 (1996).
20. Flick, D., and Huff, M. C., J. Catal. 178, 315 (1998).
21. Khodakov, A., Yang, J., Su, S., Iglesia, E., and Bell, A. T., J. Catal. 177,
343 (1998).
22. Blasco, T., Galli, A., Nieto, J. M. L., and Trifiro, F., J. Catal. 169, 203
(1997).
23. Gomez, M. F., Arrua, L. A., and Abello, M. C., Ind. Eng. Chem. Res.
36, 3468 (1997).
A single Pt–10% Rh gauze reactor can be used for rapid
production of chemicals such as olefins and oxygenates. Ex-
periments and modeling from this and previous work sug-
gest that a gauze reactor combines surface and gas-phase
chemistry by oxidizing a part of the fuel on the catalyst sur-
face to produce primarily CO2 and release a lot of heat. This
energy can be transferred to the remaining colder portion of
the feed to ignite a homogeneous reaction sequence, which
subsequently produces olefins and oxygenates. Simultane-
ously, fast quenching due to mixing lowers the exit temper-
ature and prevents the decomposition of oxygenates.
Our reactor could process 6.5 kg/day of pentane and
produce oxygenated species with carbon yields up to 1 kg/
day, from a 15-mm gauze. If that was replaced with a 1-m
diameter gauze reactor, the production would rise up to
4 t/day. It is obvious that, after optimization and recycling,
a plant using this technology could produce large amounts
of oxygenates and olefins with one relatively cheap reactor,
avoiding expensive multistage processes and exotic cata-
lysts.
24. Pestman, R., Koster, R. M., Pieterse, J. A. Z., and Ponec, V., J. Catal.
168, 255 (1997).
25. Parmaliana, A., and Arena, F., J. Catal. 167, 57 (1997).
26. Yang, C., Xu, N., and Shi, J., Ind. Eng. Chem. Res. 37, 2601 (1998).
27. Deutschmann, O., and Schmidt, L. D., in “Twenty-Seventh Symposium
(International) on Combustion,” Boulder, CO, 1998.
28. Iordanoglou, D. I., “Rapid Oxidation ofLight Alkanesin Single Gauze
Reactors.” Ph.D. thesis, University of Minnesota, Minneapolis, MN,
1998.
29. Nehse, M., “Automatische Erstellung von detaillierten Reaktion-
smechanismen zur Modellierung der Selbstzuendung und lam-
inarer Vormischflammen von gasfoermigen Kohlenwassertsoff-
Mischungen.” Ph.D. thesis, Heidelberg University, 1999.
30. Warnatz, J., Maas, U., and Dibble, R. W., “Combustion, Physical and
Chemical Fundamentals, Modeling and Simulation, Experiments, Pol-
lutant Formation.” Springer, New York, 1996.
Experiments are in progress to study the oxidation of
higher hydrocarbons, such as hexane and cyclohexane.
ACKNOWLEDGMENTS
The authors would like to thank Dr. Olaf Deutschmann and Dr.
Jurgen Warnatz of Heidelberg University for providing the mechanism
and computer code for homogeneous calculations and valuable assistance. 31. Deutschmann, O., private communication, 1999.