2900 J. Phys. Chem. B, Vol. 106, No. 11, 2002
Lee et al.
structural change is partially irreversible. This is in sharp contrast
to the case of silver or copper alkanethiolates for which
mesogenic phase transition exclusively takes place under similar
temperature conditions. In the second transition at ∼500 K, a
totally irreversible structural change takes place for silver
stearate, that is, the decomposition of the sample material. The
primary products must be metallic silver and free stearic acid,
both of which finally become stabilized by forming stearate-
derivatized Ag nanoparticles.
(24) (a) Senak, L.; Moore, D.; Mendelsohn, R. J. Phys. Chem. 1992,
6, 2749. (b) Naselli, C.; Rabe, J. P.; Rabolt, J. F.; Swalen, J. D. Thin
9
Solid Films 1985, 134, 173.
25) Sndyer, R. G.; Schaachtschneider, J. H. Spectrochim. Acta A 1963,
19, 117.
(
(
26) Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D.
Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer: Eden
Prairie, MN, 1992.
(27) Benseba, F.; Zhou, Y.; Deslandes, Y.; Kruus, E.; Ellis, T. H. Surf.
Sci. 1998, 405, L472.
(28) (a) Marshbanks, T. L.; Jugduth, H. K.; Delgass, W. N.; Franses,
E. I. Thin Solid Films 1993, 232, 126. (b) Frydman, E.; Cohen, H.; Maoz,
R.; Sagiv, J. Langmuir 1997, 13, 5089. (c) Ohta, T.; Yamada, M.; Kuroda,
H. Bull. Chem. Soc. Jpn. 1974, 47, 1158.
(
29) Han, S. W.; Joo, S. W.; Ha, T. H.; Kim, Y.; Kim, K. J. Phys. Chem.
B 2000, 104, 11987.
30) Lindberg, B.; Berndtsson, A.; Nilsson, R.; Nyholm, R.; Exner, O.
Acta Chem. Scand. A 1978, 32, 353.
Acknowledgment. This work was supported in part by the
Korea Research Foundation (KRF, 042-D00073) and the Korea
Science and Engineering Foundation (KOSEF, 1999-2-121-001-
(
(
31) Lee, S. J.; Kim, K. Vib. Spectrosc. 1998, 18, 187.
5
). K.K. also acknowledges KOSEF for providing a leading-
(32) Lee, S. J.; Han, S. W.; Yoon, M.; Kim, K. Vib. Spectrosc. 2000,
scientist grant (KOSEF, R03-2001-00021). S.W.H. was sup-
ported by KOSEF through the Center for Molecular Catalysis
at Seoul National University. S.J.L. and H.J.C. are recipients
of the BK21 fellowship.
2
4, 265.
(33) (a) Gericke, A.; H u¨ hnerfuss, H. Thin Solid Films 1994, 245, 74.
(
b) Ohe, C.; Ando, H.; Sato, N.; Urai, Y.; Yamamoto, M.; Itoh, K. J. Phys.
Chem. B 1999, 103, 435.
(
(
34) Sandhyarani, N.; Pradeep, T. J. Mater. Chem. 2001, 11, 1924.
35) Espinet, P.; Lequerica, M. C.; Mart ´ı n-Alvarez, J. M. Chem. Eur.
J. 1999, 5, 1982.
36) JCPDS ICDD PDF No. 02-1098, 03-0921, 03-0931.
References and Notes
(
(
1) Tao, Y. T. J. Am. Chem. Soc. 1993, 115, 4350.
(37) The number of stearate required for the monolayer coverage on a
silver nanoparticle is calculated as follows. Using the average diameter of
silver nanoparticles, 4 nm, determined from TEM image (see Figure 12),
the mean surface area and volume of a single particle are estimated to be
(2) Hostetler, M. J.; Stokes, J. J.; Murray, R. W. Langmuir 1996, 12,
3
604.
3) Ahn, S. J.; Son, D. H.; Kim, K. J. Mol. Struct. 1994, 324,
(
2
3
2
23.
(
50.27 nm and 33.51 nm , respectively. Assuming then that each stearate
occupies an area of 0.20 nm2 on silver surface, 251 stearates can be
anchored on each nanoparticle. On the other hand, referring to the atomic
radius of silver, 0.1445 nm,39 each nanoparticle should consist of 2651 Ag
atoms. In the actual TGA experiment, we used 10.0 mg of silver stearate
so that there was 2.8 mg of Ag in the sample (28 wt %). In fact, 2.8 mg of
38
4) Kang, S. Y.; Kim, K. Langmuir 1998, 14, 226.
(5) Dance, I. G.; Fisher, K. J.; Bamda, R. M. H.; Scudder, M. L. Inorg.
Chem. 1991, 30, 183.
6) Baena, M. J.; Espinet, P.; Lequercia, M. C.; Levelut, A. M. J. Am.
Chem. Soc. 1992, 114, 4182.
7) Fijolek, H. G.; Grohal, J. R.; Sample, J. L.; Natan, M. J. Inorg.
Chem. 1997, 36, 622.
8) Bensebaa, F.; Ellis, T. H.; Kruss, E.; Voicu, R.; Zhou, Y. Can. J.
Chem. 1998, 76, 1654.
9) Bensebaa, F.; Ellis, T. H.; Kruus, E.; Voicu, R.; Zhou, Y. Langmuir
998, 14, 6579.
10) Parikh, A. N.; Gillmor, S. D.; Beers, J. D.; Beardmore, K. M.; Cutts,
R. W.; Swanson, B. I. J. Phys. Chem. B 1999, 103, 2850.
11) Bardeau, J. F.; Parikh, A. N.; Beers, J. D.; Swanson, B. I. J. Phys.
Chem. B 2000, 104, 627.
12) Vand, A.; Atkins, A.; Cambell, R. K. Acta Crystallogr. 1949, 2,
98.
(
15
(
Ag can be converted to 5.7 × 10 nanoparticles with a size of 4 nm; [(2.8
-3 -1 -1 23 -1
mg)(10 g mg )/(107.868 g mol )][(6.02 × 10 mol )/(2651)] ) 5.7
15
(
× 10 . These nanoparticles will then be covered in total by 0.67 mg of
15 -1 3 23 -1
stearate; (5.7 × 10 )(251)(283.473 g mol )(10 mg g)/(6.02 × 10 mol
)
(
) 0.67 mg. The latter amount corresponds to 6.7% mass loss in the TGA
experiment. In this light, 0.6 mg of stearate which corresponds to 6% mass
loss in TGA can be presumed to cover 90% of the nanoparticles; (0.60/
0.67)(100) ) 90. This implies in turn that 90% of metallic silver can be
stabilized as nanoparticles by only 6% of stearate present after the thermal
decomposition of silver stearate between 450 and 610 K.
(38) Ulman, A. An Introduction to Ultrathin Organic Films; Academic
Press: San Diego, New York, 1991.
1
(
(
(
3
(
13) Matthews, F. W.; Warren, G. G.; Michell, J. H. Anal. Chem. 1950,
(39) Chidsey, C. E. D.; Loiacono, D. N.; Sleator, T.; Nakahara, S. Surf.
Sci. 1988, 200, 45.
2
2, 514.
(
14) Tolochko, B. P.; Chernov, S. V.; Nikitenko, S. G.; Whitcomb, D.
R. Nucl. Instrum. Methods A 1998, 405, 428.
15) (a) Aksay, I. A.; Trau, M.; Manne, S.; Honma, I.; Yao, N.; Zhou,
L.; Fenter, P.; Eisenberger, P. M.; Gruner, S. M. Science 1996, 273,
92. (b) Lacroix, P. G.; Clement, R.; Nakatani, K.; Zyss, J.; Ledoux, I.
Science 1994, 263, 658. (c) Vermeulen L. A.; Thompson, M. E. Nature
992, 358, 656. (d) Laget, V.; Hornick, C.; Rabu, P.; Drillon, M.; Turek,
P.; Ziessel, R. N. AdV. Mater. 1998, 10, 1024.
16) CRC Handbook of Chemistry and Physics, 71st ed.; Lide, D. R.,
Ed.; CRC Press: Boca Raton, FL, 1990.
17) (a) Snyder, R. G.; Hsu, S. L.; Krimm, S. Spectrochim. Acta A 1978,
4, 395. (b) Hill, I. R.; Levin, I. W. J. Chem. Phys. 1979, 70, 842.
18) (a) Snyder, R. G.; Strauss, H. L.; Elliger, C. A. J. Phys. Chem.
982, 86, 5145. (b) Snyder, R. G.; Maroncelli, M.; Strauss, H. L.; Hallmark,
(40) Sandhyarani, N.; Antony, M. P.; Selvam, G.; Pradeep, T. J. Chem.
Phys. 2000, 113, 9794.
(41) (a) Fields, E. K.; Meyerson, S. J. Org. Chem. 1976, 41, 916. (b)
Fiorucci, A. R.; Saran, L. M.; Cavalheiro, E. T. G.; Neves, E. A.
Thermochim. Acta 2000, 356, 71.
(42) Judd, M. D.; Plankett, B. A.; Pope, M. I. J. Therm. Anal. 1974, 6,
555.
(43) Andreev, V. M.; Burleva, L. P.; Boldyrev, V. V.; Mikhaliv, Y. I.
IzV. SO AN USSR, SerKhim. Nauk 1983, 2, 58.
(44) Uvarov, N. F.; Burleva, L. P.; Mizen, M. B.; Whitcomb, D. R.;
Zou, C. Solid State Ionics 1998, 107, 31.
(45) (a) Blazso, M. J.; Zelei, B.; Jakab, E. J. Anal. Appl. Pyrolysis 1995,
35, 221. (b) Choi, H. J.; Han, S. W.; Lee, S. J.; Kim, K. Appl. Spectrosc.
2001, 55, 1085.
(
8
1
(
(
3
(
1
V. M. J. Phys. Chem. 1986, 90, 5623. (c) MacPhail, R. A.; Snyder, R. G.;
Strauss, H. L. J. Chem. Phys. 1982, 77, 1118.
(46) Abe, K.; Hanada, T.; Yoshida, Y.; Tanigaki, N.; Takiguchi, H.;
Nagasawa, H.; Nakamoto, M.; Yamaguchi, T.; Yase, K. Thin Solid Films
1998, 327-329, 524.
(19) MacPhail, R. A.; Strauss, H. L.; Snyder, R. G.; Elliger, C. A. J.
Phys. Chem. 1982, 86, 334.
(47) Templeton, A. C.; Wuelfing, W. P.; Murray, R. W. Acc. Chem.
Res. 2000, 33, 27.
(
(
(
20) Snyder, R. G. J. Mol. Spectrosc. 1961, 7, 116.
21) Snyder, R. G. J. Chem. Phys. 1967, 47, 1316.
22) Snyder, R. G. In Methods of Experimental Physics; Marton, L.,
(48) Henglein, A. J. J. Phys. Chem. 1993, 97, 5457.
(49) (a) Han, H. S.; Kim, C. H.; Kim, K. Appl. Spectrosc. 1998, 52,
1047. (b) Han, S. W.; Han, H. S.; Kim, K. Vib. Spectrosc. 1999, 21,
133. (c) Han, H. S.; Han, S. W.; Kim, C. H.; Kim, K. Langmuir 2000, 16,
1149.
Marton, C., Eds.; Academic Press: New York, 1980.
23) (a) Borja, M.; Dutta, P. K. J. Phys. Chem. 1992, 96, 5434. (b)
Almirante, C.; Minoni, G.; Zerbi, G. J. Phys. Chem. 1986, 90, 852.
(