8946 J. Phys. Chem. B, Vol. 108, No. 26, 2004
Woo et al.
reoxidation (O2 consumption) of reduced catalysts. The catalysts
were highly active and selective when an appropriate amount
of Ca oxide was present on the surface along with Bi and Mo
oxides.
Acknowledgment. This research was funded by Tong-Suh
Petrochemical company and CUPS (Center for Ultra-micro-
chemical Process Systems) sponsored by KOSEF (2003-2004).
The authors thank Professor I. Wachs and Dr. D. S. Kim for
their help in obtaining the Raman spectra.
References and Notes
(
1) Centi, G.; Trifiro, F.; Ebner, J. R.; Franchetti, V. M. Chem. ReV.
1
988, 88, 55.
(
(
2) Kim, Y. C.; Ueda, W.; Moro-oka, Y. Appl. Catal. 1991, 70, 189.
3) Glaeser, L. C.; Brazidil, J. F.; Toft, M. A. U.S. patent, 5 097 207,
Figure 8. TPRO profile of the Ca-Bi-Mo oxide system.
1
1
2
992.
(4) Seely, M. J.; Friedrich, M. S.; Suresh, D. D. U.S. patent, 4 978 764,
990.
molybdenum oxide. When bismuth oxide was added to CaMoO4,
the ability for reoxidation increased with the addition of bismuth
oxide. In particular, the increase of reoxidation at the second
peak was explained by cation vacancies of the Ca-Bi-Mo
oxide as mentioned in previous IR and Raman results. When
calcium oxide was added to BiMo oxide, the ability for
reoxidation at the first peak was greatly enhanced. It was thought
that the bismuth ions on the surface might act as the sites for
the adsorption of gaseous oxygen and the oxidation state of
bismuth would probably be the highest, i.e., Bi(V).
(5) Guerrero-P e´ rez, M. O.; Fierro, J. L. G.; Ba n˜ ares, M. A. Catal. Today
003, 78, 387.
(6) Nguyen, D. L.; Taarit, Y. B.; Millet, J.-M. M. Catal. Lett. 2003,
90, 65.
(7) Zanthoff, H. W.; Grunert, W.; Buchholz, S.; Heber, M.; Stievano
L.; Wagner, F. E.; Wolf, G. U. J. Mol. Catal. A: Chem. 2000, 162, 443.
(8) Holmberg, J.; Grasselli, R. K.; Andersson, A. Top. Catal. 2003,
23 (1-4), 55.
(9) Asakura, K.; Nakatani, K.; Kubota, T.; Iwasawa, Y. J. Catal. 2000,
194 (2), 309.
(
(
10) Kim, J. S.; Woo, S. I. Appl. Catal. 1994, 110, 173.
11) Kim, J. S.; Woo, S. I. Appl. Catal. 1994, 110, 207.
Conclusions
(12) Hardcastle, F. D.; Wachs, I. E. J. Phys. Chem. 1991, 95, 26.
13) Brazidil, J. F.; Glaeser, L. C.; Grasselli, R. K. J. Catal. 1983, 81,
42.
(14) Aykan, K.; Sleight, A. W.; Rogers, B. J. Catal. 1973, 31, 185.
(
The physicochemical properties of highly active and selective
Ca-Bi-Mo oxide for ammoxidation of propane to acrylonitrile
were investigated by powder XRD, IR/Raman, XPS, and TPRX/
TPRO (temperature programmed reaction/temperature pro-
grammed reoxidation) techniques. The phases in the Ca-Bi-
Mo oxide varied with the composition of the oxide. The
γ-bismuth molybdate (γ-Bi2MoO6) in both Ca6Bi6Mo12 oxide
and Ca9Bi3Mo12 oxide is considered to be the active phase for
propane ammoxidation to acrylonitrile. The defective Ca-Bi-
Mo oxide produced by the addition of Bi oxide played an
important role in propane ammoxidation. The addition of
calcium oxide into Bi-Mo oxide decreased the number of active
sites for complete oxidation and increased the ability for
1
(
(
15) Hardcastle, F. D.; Wachs, I. E. J. Raman Spectrosc. 1990, 25, 683.
16) Sleight, A. W.; Aykan, K.; Rogers, D. B. J. Solid State Chem. 1975,
13, 231.
(17) Kim, Y. C.; Ueda, W.; Moro-oka, Y. Appl. Catal. 1991, 70, 175.
(18) Mitsuura, I.; Walfs, M. W. J. J. Catal. 1975, 37, 174.
(19) Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.;
Muilenberg, G. F. Handbook of X-ray Photoelectron Spectroscopy; Perkin-
Elmer: Eden Prairie, MN,1978.
(20) Keulks, G. W.; Liao, N.; An, W.; Li, D. Int. Congr. Catal., 10th,
Budapest, Hungary 1993, 2253.
(21) Haber, J. In Surface properties and Catalysis by Nonmetals;
Bonnelle, J. P., Delmon, B., Derouane, E., Eds.; D. Reidel Publishing Co.:
Dordrecht, The Netherlands, 1982; 1.
(22) Miura, H.; Morikawa, Y.; Shirasaki, T. J. Catal. 1975, 39, 22.