Paper
Catalysis Science & Technology
were located in the pores of the carbon nanotubes. It is possi-
ble that pore-confinement within the CNT plays a role since a
8 G. W. Huber and J. A. Dumesic, Catal. Today, 2006, 111,
119–132.
large fraction of the large PdZn
the pores of the nanotubes. Among the catalysts studied, we
β
particles were located within
9 H. N. Pham, A. E. Anderson, R. L. Johnson, K. Schmidt-Rohr
and A. K. Datye, Angew. Chem., Int. Ed., 2012, 51,
13163–13167.
conclude that PdZn in carbon nanotubes provide an excel-
β
lent catalyst for the aqueous phase reforming of ethanol,
10 B. Roy, K. Artyushkova, H. N. Pham, L. Li, A. K. Datye and
C. A. Leclerc, Int. J. Hydrogen Energy, 2012, 37, 18815–18826.
11 R. M. Ravenelle, J. R. Copeland, W.-G. Kim, J. C. Crittenden
and C. Sievers, ACS Catal., 2011, 1, 552–561.
yielding CO-free H at low temperatures (250 °C) with a yield
2
of 2 moles of H2 per mole of ethanol reacted. However,
the selectivity towards H is considerably lower than the theo-
2
retical value of 6 H per mole ethanol converted. This is a
12 A. L. Jongerius, J. R. Copeland, G. S. Foo, J. P. Hofmann,
P. C. A. Bruijnincx, C. Sievers and B. M. Weckhuysen, ACS Catal.,
2013, 3, 464–473.
2
limitation of the low temperature route which does not allow
for complete oxidation of both carbon atoms in the ethanol
molecule and results in the formation of oxygenated products.
13 H. Xiong, H. N. Pham and A. K. Datye, J. Catal., 2013, 302,
9
3–100.
1
1
1
4 H. Xiong, M. Nolan, B. H. Shanks and A. K. Datye, Appl.
Catal., A, 2014, 471, 165–174.
5 S. Rabe, M. Nachtegaal, T. Ulrich and F. Vogel, Angew.
Chem., Int. Ed., 2010, 49, 6434–6437.
6 P. Ferrin, D. Simonetti, S. Kandoi, E. Kunkes, J. A. Dumesic,
J. K. Nørskov and M. Mavrikakis, J. Am. Chem. Soc.,
Acknowledgements
This work is supported by DOE grant DE-FG02-05ER15712
and the Center for Biorenewable Chemicals (CBiRC) supported
by NSF under no. EEC-0813570. We thank Eric Peterson for
help with XRD, Jay McCabe for CO oxidation reactivity and
2
009, 131, 5809–5815.
2
Dr. H. Pham for assistance with N physisorption measurements.
1
7 B. Halevi, E. J. Peterson, A. Roy, A. DeLariva, E. Jeroro,
F. Gao, Y. Wang, J. M. Vohs, B. Kiefer, E. Kunkes,
M. Hävecker, M. Behrens, R. Schlögl and A. K. Datye,
J. Catal., 2012, 291, 44–54.
References
1
2
3
4
5
6
7
U. Eberle, M. Felderhoff and F. Schüth, Angew. Chem.,
Int. Ed., 2009, 48, 6608–6630.
D. R. Palo, R. A. Dagle and J. D. Holladay, Chem. Rev.,
18 H. Xiong, M. A. M. Motchelaho, M. Moyo, L. L. Jewell and
N. J. Coville, J. Catal., 2011, 278, 26–40.
19 R. S. Johnson, A. DeLaRiva, V. Ashbacher, B. Halevi,
C. J. Villanueva, G. K. Smith, S. Lin, A. K. Datye and H. Guo,
Phys. Chem. Chem. Phys., 2013, 15, 7768–7776.
20 A. Karim, T. Conant and A. Datye, J. Catal., 2006, 243,
420–427.
21 J. Llorca, P. R. D. L. Piscina, J. Sales and N. Homs, Chem.
Commun., 2001, 641–642.
22 X. Pan and X. Bao, Acc. Chem. Res., 2011, 44, 553–562.
23 R. Dagle, Y.-H. Chin and Y. Wang, Top. Catal., 2007, 46,
358–362.
2
007, 107, 3992–4021.
L. V. Mattos, G. Jacobs, B. H. Davis and F. B. Noronha,
Chem. Rev., 2012, 112, 4094–4123.
J. Sun, D. Mei, A. M. Karim, A. K. Datye and Y. Wang,
ChemCatChem, 2013, 5, 1299–1303.
J. N. Chheda, G. W. Huber and J. A. Dumesic, Angew. Chem.,
Int. Ed., 2007, 46, 7164–7183.
R. R. Davda, J. W. Shabaker, G. W. Huber, R. D. Cortright
and J. A. Dumesic, Appl. Catal., B, 2005, 56, 171–186.
J. Llorca, N. S. Homs, J. Sales and P. R. R. de la Piscina,
J. Catal., 2002, 209, 306–317.
24 T. Conant, A. M. Karim, V. Lebarbier, Y. Wang, F. Girgsdies,
R. Schlögl and A. Datye, J. Catal., 2008, 257, 64–70.
Catal. Sci. Technol.
This journal is © The Royal Society of Chemistry 2014