Journal of the American Chemical Society
Page 6 of 8
* cbmurray@sas.upenn.edu
Scheme 1. Methane Steam Reforming (MSR) and water-
gas shift-reaction (WGSR) and associated reaction
enthalpy values at 298 K.
1
Present Addresses
2
3
4
5
†Department of Chemical Engineering and SUNCAT Center for
Interface Science and Catalysis, Stanford University, Stanford,
CA 94305 (USA).
CH4 + H2O
CO + H2 (MSR)
ꢂH0 (298 K) = +206 kJ molꢀ1
r
Author Contributions
6
7
8
9
CO + H2O
CO2 + H2 (WGSR)
ꢂH0 (298 K) = ꢀ41 kJ molꢀ1
The manuscript was written through contributions of all authors.
r
ACKNOWLEDGMENT
CeO2ꢀsupported systems produce CO2 (and H2, not reported)
almost exclusively, and only small traces of CO are measured.
Because of the WGSR equilibrium, CO can be further
oxidized to formation CO2 and additional H2 (Scheme 1).
WGSR is known to be promoted on ceriaꢀsupported systems
compared to alumina.33 The case of the Pd/Al2O3 is radically
different. CO selectivity is ~30 % for 2.3 nm particles and it is
similar in the temperature window of our experiments.
However, with increase in particle size, a steady increase in
CO selectivity is observed, with 7.7 nm particles resulting in
~95 % selectivity for CO with only trace CO2 measured. In
contrast to other transition metals, the high activity of Pd in Cꢀ
H bond activation renders this step for MSR reversible,
whereas H2O activation and WGSR steps remain
irreversible.31 For this reason, WGSR controls the equilibria of
CO, CO2, H2 and H2O, and the rates of formation of all
products. We separately investigated the rates for WGSR on
Pd/Al2O3 (Figure S3) and found that indeed smaller particles
are more active than larger ones. Therefore, we postulate that
smaller Pd particles supported on Al2O3, rich in
undercoordinated metal atoms, promote WGSR and the
production of CO2. Larger particles instead contain a much
lower fraction of undercoordinated sites, thus showing a much
lower WGSR activity. It is important to note that particle size
is only very slightly influenced by the reaction conditions, and
narrow size distributions are still maintained despite the high
temperature of the MSR (Figure S4). In this way, we
demonstrate that it is possible to control activity and
selectivity of the MSR by controlling Pd particle size on an
inert support such as alumina. This result is possible by using
a combination of sizeꢀselected NCs as active phase and the
appropriate activation of the catalysts by ligand removal using
the method developed in this work.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
M.C. acknowledge support from the National Science Foundation
through the Nano/Bio Interface Center at the University of
Pennsylvania, Grant DMR08ꢀ32802. C.C. and R.J.G. were
supported by the Department of Energy, Office of Basic Energy
Sciences, Chemical Sciences, Geosciences and Biosciences
Division, Grant No. DEꢀFG02ꢀ13ER16380. C.B.M. is grateful for
the support of the Richard Perry University Professorship.
REFERENCES
1. Park, J.; Joo, J.; Soon, G. K.; Jang, Y.; Hyeon, T.
Angew. Chem. Int. Ed. 2007, 46, 4630.
2. Carbone, L.; Cozzoli, P. D. Nano Today 2010, 5, 449.
3. Park, J.; Lee, E.; Hwang, N. M.; Kang, M.; Kim, S. C.;
Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.;
Hyeon, T. Angew. Chem. Int. Ed. 2005, 44, 2872.
4. Cargnello, M.; Fornasiero, P.; Gorte, R. J.
ChemPhysChem 2013, 14, 3869.
5. Marshall, S. T.; O'Brien, M.; Oetter, B.; Corpuz, A.;
Richards, R. M.; Schwartz, D. K.; Medlin, J. W. Nat.
Mater. 2010, 9, 853.
6. Wu, Z.; Jiang, D. e.; Mann, A. K. P.; Mullins, D. R.;
Qiao, Z. A.; Allard, L. F.; Zeng, C.; Jin, R.; Overbury, S.
H. J. Am. Chem. Soc. 2014, 136, 6111.
7. Li, W. Z.; Kovarik, L.; Mei, D.; Engelhard, M. H.; Gao,
F.; Liu, J.; Wang, Y.; Peden, C. H. F. Chem. Mater. 2014,
26, 5475.
8. Menard, L. D.; Xu, F.; Nuzzo, R. G.; Yang, J. C. J.
Catal. 2006, 243, 64.
9. Ma, G.; Binder, A.; Chi, M.; Liu, C.; Jin, R.; Jiang, D.;
Fan, J.; Dai, S. Chem. Commun. 2012, 48, 11413.
10. LopezꢀSanchez, J. A.; Dimitratos, N.; Hammond, C.;
Brett, G. L.; Kesavan, L.; White, S.; Miedziak, P.;
Tiruvalam, R.; Jenkins, R. L.; Carley, A. F.; Knight, D.;
Kiely, C. J.; Hutchings, G. J. Nat. Chem. 2011, 3, 551.
4. CONCLUSIONS
In summary, we demonstrated that a rapid thermal treatment
of supported metal nanocrystals in air is able to remove
organic ligands and activate materials for catalytic reactions
without changing the size, size distribution, or morphology of
the supported particles. This method is widely applicable and
provides a simple yet convenient way to obtain uniform
catalysts that can provide fundamental insights into the
reactivity of nanoscale surfaces.
11. Kilmartin, J.; Sarip, R.; GrauꢀCrespo, R.; Di Tommaso,
D.; Hogarth, G.; Prestipino, C.; Sankar, G. ACS Catal.
2012, 2, 957.
12. Gordon, T. R.; Cargnello, M.; Paik, T.; Mangolini, F.;
Weber, R. T.; Fornasiero, P.; Murray, C. B. J. Am. Chem.
Soc. 2012, 134, 6751.
13. Elliott, E. W.; Glover, R. D.; Hutchison, J. E. ACS
Nano 2015, 9, 3050.
ASSOCIATED CONTENT
Supporting Information. Additional supplementary figures. This
material is available free of charge via the Internet at
14. Cademartiri, L.; Ghadimi, A.; Ozin, G. A. Acc. Chem.
Res. 2008, 41, 1820.
15. Chen, W.; Kim, J.; Sun, S.; Chen, S. Phys. Chem.
Chem. Phys. 2006, 8, 2779.
AUTHOR INFORMATION
Corresponding Author
ACS Paragon Plus Environment