Paper
RSC Advances
16 J. R. H. Ross, A. N. J. vanKeulen, M. E. S. Hegarty and
K. Seshan, Catal. Today, 1996, 30, 193–199.
17 Y. H. Hu and E. Ruckenstein, Catal. Rev.: Sci. Eng., 2002, 44,
423–453.
18 N. Sun, X. Wen, F. Wang, W. Wei and Y. Sun, Energy Environ.
Sci., 2010, 3, 366–369.
19 K. Takanabe, K. Nagaoka, K. Nariai and K. Aika, J. Catal.,
2005, 232, 268–275.
20 S. Liu, L. Guan, J. Li, N. Zhao, W. Wei and Y. Sun, Fuel, 2008,
87, 2477–2481.
21 P. Ferreira-Aparicio, A. Guerrero-Ruiz and I. Rodriguez-
Ramos, Appl. Catal., A, 1998, 170, 177–187.
22 J. H. Edwards and A. M. Maitra, Fuel Process. Technol., 1995,
42, 269–289.
23 A. W. Budiman, S. H. Song, T. S. Chang, C. H. Shin and
M. J. Choi, Catal. Surv. Asia, 2012, 16, 183–197.
24 C. Shi and P. Zhang, Appl. Catal., B, 2012, 115, 190–200.
25 X. Y. Quek, D. Liu, W. N. E. Cheo, H. Wang, Y. Chen and
Y. Yang, Appl. Catal., B, 2010, 95, 374–382.
26 M. S. Fan, A. Z. Abdullah and S. Bhatia, Appl. Catal., B, 2010,
100, 365–377.
4 Conclusion
In conclusion, a series of ordered mesoporous CoAl2O4 spinel-
based metal oxides with different Co content were designed
and facilely prepared by a one-step evaporation induced self-
assemble method for the rst time. The obtained materials
exhibited excellent structural properties and good thermal
stability, and were utilized as catalysts for the CRM reaction.
Compared with non-mesoporous and traditional supported
catalysts, these mesoporous catalysts exhibited higher catalytic
activities and better stabilities. The ordered mesoporous
structure could signicantly improve catalytic activity and
stability by providing sufficiently accessible Co metallic active
sites for gaseous feed stocks and stabilizing the Co nano-
particles via the connement effect of the mesoporous frame-
work during the CRM reaction, simultaneously. In addition, the
OMA-xCo catalysts had a strong capacity for coke resistance due
to the size effect of the Co nanoparticles. Our results demon-
strated that these OMA-xCo materials could be considered as a
series of promising catalysts for the CRM reaction.
27 J. Zhang, H. Wang and A. K. Dalai, J. Catal., 2007, 249, 300–
310.
28 P. Djinovic, I. G. O. Crnivec, B. Erjavec and A. Pintar, Appl.
Catal., B, 2012, 125, 259–270.
29 E. Ruckenstein and H. Y. Wang, Appl. Catal., A, 2000, 204,
257–263.
30 E. Ruckenstein and H. Y. Wang, J. Catal., 2002, 205, 289–293.
31 N. Wang, W. Chu, L. Huang and T. Zhang, J. Nat. Gas Chem.,
2010, 19, 117–122.
Acknowledgements
The authors acknowledge the nancial support from Singapore
MOE grant R143-000-542-112, Singapore National Research
Foundation CREATE-SPURc program R-143-001-205-592, and
Jiangsu Province Government Research Platform Grant and
NUSRI Seed Fund.
32 S. B. Wang, G. Q. M. Lu and G. J. Millar, Energy Fuels, 1996,
10, 896–904.
References
1 A. Baiker, Appl. Organomet. Chem., 2000, 14, 751–762.
2 I. Omae, Catal. Today, 2006, 115, 33–52.
33 J. H. Kim, D. J. Suh, T. J. Park and K. L. Kim, Appl. Catal., A,
2000, 197, 191–200.
3 K. Mette, S. Kuehl, H. Duedder, K. Kaehler, A. Tarasov, 34 H. Y. Wang and E. Ruckenstein, Appl. Catal., A, 2001, 209,
M. Muhler and M. Behrens, ChemCatChem, 2014, 6, 100–104.
4 C. S. Song, Catal. Today, 2006, 115, 2–32.
5 W. Wang, S. Wang, X. Ma and J. Gong, Chem. Soc. Rev., 2011,
40, 3703–3727.
6 R. Schloegl, ChemSusChem, 2010, 3, 209–222.
7 A. T. Ashcro, A. K. Cheetham, M. L. H. Green and
P. D. F. Vernon, Nature, 1991, 352, 225–226.
8 W. Chen, G. Zhao, Q. Xue, L. Chen and Y. Lu, Appl. Catal., B,
2013, 136, 260–268.
9 Z. Liu, J. Zhou, K. Cao, W. Yang, H. Gao, Y. Wang and H. Li,
Appl. Catal., B, 2012, 125, 324–330.
10 M. Yu, K. Zhu, Z. Liu, H. Xiao, W. Deng and X. Zhou, Appl.
Catal., B, 2014, 148, 177–190.
207–215.
35 W. Zhu, A. Borjesson and K. Bolton, Carbon, 2010, 48, 470–
478.
36 Y. H. Hu, Catal. Today, 2009, 148, 206–211.
37 K. Bourikas, C. Kordulis and A. Lycourghiotis, Catal. Rev.:
Sci. Eng., 2006, 48, 363–444.
38 S. Damyanova, B. Pawelec, K. Arishtirova, J. L. G. Fierro,
C. Sener and T. Dogu, Appl. Catal., B, 2009, 92, 250–261.
39 L. Y. Mo, J. H. Fei, C. J. Huang and X. M. Zheng, J. Mol. Catal.
A: Chem., 2003, 193, 177–184.
40 L. Y. Mo, X. M. Zheng, C. J. Huang and J. H. Fei, Catal. Lett.,
2002, 80, 165–169.
41 Q. Yuan, A. X. Yin, C. Luo, L. D. Sun, Y. W. Zhang,
W. T. Duan, H. C. Liu and C. H. Yan, J. Am. Chem. Soc.,
2008, 130, 3465–3472.
11 S. Zeng, X. Zhang, X. Fu, L. Zhang, H. Su and H. Pan, Appl.
Catal., B, 2013, 136, 308–316.
12 M. C. J. Bradford and M. A. Vannice, Catal. Rev.: Sci. Eng., 42 S. M. Morris, P. F. Fulvio and M. Jaroniec, J. Am. Chem. Soc.,
1999, 41, 1–42.
2008, 130, 15210–15216.
13 M. S. Fan, A. Z. Abdullah and S. Bhatia, ChemCatChem, 2009, 43 H. Y. Wang and E. Ruckenstein, Catal. Lett., 2001, 75, 13–18.
1, 192–208.
44 R. Liu, M. Yang, C. Huang, W. Weng and H. Wan, Chin. J.
Catal., 2013, 34, 146–151.
14 C. J. Liu, J. Ye, J. Jiang and Y. Pan, ChemCatChem, 2011, 3,
529–541.
15 B. Q. Xu and W. M. H. Sachtler, J. Catal., 1998, 180, 194–206.
This journal is © The Royal Society of Chemistry 2015
RSC Adv., 2015, 5, 48256–48268 | 48267