RSC Advances
Communication
stabilizing both carbon substrate and platinum nano-catalyst,
(ii) preventing electrophoretic mobility, (iii) not directly inter-
acting with the platinum nano-catalyst surface sites, whilst (iv)
preventing larger adsorbates reaching the catalyst surface.
Enhanced stability does not come at the cost of reduced
performance as the ow of reagents and charges through the
microporous PIM-EA-TB environment is sufficient for good
catalysis. Materials properties at the molecular level are
important for catalyst performance improvement for a range of
potential fuel cell technologies (and beyond). We believe our
methodology provides a new and general route to increase fuel
cell anode catalyst performance and lifetime.
References
1 H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang and
P. Wilkinson, J. Power Sources, 2006, 155, 95.
2 S. K. Kamarudin, F. Achmad and W. R. W. Daud, Int. J.
Hydrogen Energy, 2009, 34, 6902.
3 M. Z. F. Kamarudin, S. K. Kamarudin, M. S. Masdar and
W. R. W. Daud, Int. J. Hydrogen Energy, 2013, 38, 9438.
4 X. Yu and P. G. Pickup, J. Power Sources, 2008, 182, 124.
5 J. Park, H. Oh, T. Ha, Y. I. Lee and K. Min, Appl. Energy, 2015,
155, 866.
6 L. Li, L. P. Hu, J. Li and Z. D. Wei, Nano Res., 2015, 8, 418.
7 X. Zhao, M. Yin, L. Ma, L. Liang, C. P. Liu, J. H. Liao, T. H. Lu
and W. Xing, Energy Environ. Sci., 2011, 4, 2736.
8 F. Vigier, C. Coutanceau, A. Perrard, E. M. Belgsir and
C. Lamy, J. Appl. Electrochem., 2004, 34, 439.
Experiment section
Chemical reagents
Commercial Pt/C (40 wt% on Vulcan-72) catalysts and Naon
(5 wt%) were obtained from Johnson Matthey and Dupont,
9 C. Rice, S. Ha, R. I. Masel and A. Wieckowski, J. Power
Sources, 2003, 115, 229.
respectively. Isopropanol, chloroform, and perchloric acid (70– 10 N. C. Cheng, M. N. Banis, J. Liu, A. Riese, X. Li, R. Y. Li,
72%), were purchased from Aldrich or Fisher Scientic and S. Y. Ye, S. Knights and X. L. Sun, Adv. Mater., 2015, 27, 277.
used without further purication. PIM-EA-TB was prepared 11 N. C. Cheng, M. N. Banis, J. Liu, A. Riese, S. C. Mu, R. Y. Li,
following a literature recipe.36 Solutions were prepared with
T. K. Sham and X. L. Sun, Energy Environ. Sci., 2015, 8, 1450.
ltered and deionized water of resistivity 18.2 MW cm from 12 E. G. Ciapina, S. F. Santos and E. R. Gonzalez, J. Electroanal.
a Thermo Scientic water purication system (ELGA).
Chem., 2010, 644, 132; S. Chen, Z. Wei, X. Qi, L. Dong,
Y. Guo, L. Wan, Z. Shao and L. Li, J. Am. Chem. Soc., 2012,
134, 13252.
Instrumentation and procedures
13 M. W. Breiter, J. Electroanal. Chem. Interfacial Electrochem.,
1967, 15, 221.
14 M. Zhiani, B. Rezaei and J. Jalili, Int. J. Hydrogen Energy, 2010,
35, 9298.
15 D. P. He, C. Zeng, C. Xu, N. C. Cheng, H. G. Li, S. C. Mu and
M. Pan, Langmuir, 2011, 27, 5582.
16 M. Zhiani, B. Rezaei and J. Jalili, Int. J. Hydrogen Energy, 2010,
35, 9298.
17 D. P. He, S. C. Mu and M. Pan, Carbon, 2011, 49, 82.
18 D. P. He, K. Cheng, H. G. Li, T. Peng, F. Xu, S. C. Mu and
M. Pan, Langmuir, 2012, 28, 3979.
19 Z. Q. Tian, S. P. Jiang, Z. Liu and L. Li, Electrochem. Commun.,
2007, 9, 1613.
Electrochemical measurements were performed with a mAuto-
lab III system in a conventional three electrode cell with KCl-
saturated calomel (SCE) reference and platinum wire counter
electrode. A Pine AFMSRCE electrode rotator was used for
rotating disk electrode (RDE) experiments. Data obtained in
stationary solution and with rotation were essentially identical
and therefore only stationary experiments are reported here.
Morphologies of the prepared catalysts were analyzed with
a JEOL FESEM 6301F scanning electron microscopy (SEM) and
a JEOL 2010 high-resolution transmission electron microscope
(HRTEM).
Procedures for electrode preparation
20 N. B. McKeown and P. M. Budd, Macromolecules, 2010, 43,
5163.
2 mg of Pt/C catalyst and 100 mL of 5 wt% Naon solution were
dispersed in 1 mL of isopropanol, followed by a sonication for at
least 15 min to form a homogeneous catalyst ink. A volume of 8 mL
of the ink was loaded onto a glassy carbon (GC) disk electrode with
a diameter of 6 mm. The catalyst layer was allowed to dry under
ambient conditions before a CV measurement. Polymer with
intrinsic microporosity coating Pt/C (PIM@Pt/C) was conducted as
follow: a solution of 1 mg cmÀ3 PIM-EA-TB was prepared in
chloroform and 10 mL was applied directly by coating the Pt/C
catalyst layer followed by drying under ambient conditions.
21 T. Fujigaya, M. Okamoto, K. Matsumoto, K. Kaneko and
N. Nakashima, ChemCatChem, 2013, 5, 1701.
22 N. B. McKeown, B. Gahnem, K. J. Msayib, P. M. Budd,
C. E. Tattershall, K. Mahmood, S. Tan, D. Book,
H. W. Langmi and A. Walton, Angew. Chem., Int. Ed., 2006,
45, 1804.
23 C. G. Bezzu, M. Carta, A. Tonkins, J. C. Jansen, P. Bernardo,
F. Bazzarelli and N. B. McKeown, Adv. Mater., 2012, 24, 5930.
24 S. V. Adymkanov, Y. P. Yampolskii, A. M. Polyakov,
P. M. Budd, K. J. Reynolds, N. B. McKeown and
K. J. Msayib, Polym. Sci., 2008, 50, 444.
Acknowledgements
25 P. M. Budd, N. B. McKeown, B. S. Ghanem, K. J. Msayib,
D. Fritsch, L. Starannikova, N. Belov, O. Sanrova,
Y. P. Yampolskii and V. Shantarovich, J. Membr. Sci., 2008,
325, 851.
D. H. thanks the Royal Society for a Newton International Fellow.
F. M. and N. M. thank the Leverhulme Trust for support (RPG-
2014-308). F. M. thanks Dr Robert Potter from Johnson-Matthey
for support with catalyst materials and for helpful discussion.
9318 | RSC Adv., 2016, 6, 9315–9319
This journal is © The Royal Society of Chemistry 2016