Journal of Materials Chemistry A
Communication
nanosheets, which is favourable for the HCHO oxidation. 10 C. Zhang, Y. Li, Y. Wang and H. He, Environ. Sci. Technol.,
Finally, the surface OHꢀ played the main role in the reaction
2014, 48, 5816–5822.
path of HCHO oxidation, which can directly react with formate 11 P. Zhou, J. Yu, L. Nie and M. Jaroniec, J. Mater. Chem. A, 2015,
species to produce CO2 and H2O. Therefore, the superb catalytic 3, 10432–10438.
performance of the NiCo2O4-1 nanosheets can be attributed to 12 J. Yu, X. Li, Z. Xu and W. Xiao, Environ. Sci. Technol., 2013, 47,
the synergistic effects of the large surface area, enhanced HCHO 9928–9933.
adsorption, the redox cycles of Co3+/Co2+ and Ni3+/Ni2+, and the 13 C. Zhang, F. Liu, Y. Zhai, H. Ariga, N. Yi, Y. Liu, K. Asakura,
surface OHꢀ.
M. Flytzani-Stephanopoulos and H. He, Angew. Chem., Int.
Ed., 2012, 51, 9628–9632.
14 L. Nie, J. Yu, X. Li, B. Cheng, G. Liu and M. Jaroniec, Environ.
Sci. Technol., 2013, 47, 2777–2783.
Conclusions
15 G. Avgouropoulos, E. Oikonomopoulos, D. Kanistras and
T. Ioannides, Appl. Catal., B, 2006, 65, 62–69.
16 B. Bai and J. Li, ACS Catal., 2014, 4, 2753–2762.
17 Y. Huang, B. Long, M. Tang, Z. Rui, M. S. Balogun, Y. Tong
and H. Ji, Appl. Catal., B, 2016, 181, 779–787.
18 Z. Ren, V. Botu, S. Wang, Y. Meng, W. Song, Y. Guo,
R. Ramprasad, S. L. Suib and P. X. Gao, Angew. Chem., Int.
Ed., 2014, 53, 7223–7227.
19 B. Bai, H. Arandiyan and J. Li, Appl. Catal., B, 2013, 142, 677–
683.
20 Y. Wang, X. Zhu, M. Crocker, B. Chen and C. Shi, Appl.
Catal., B, 2014, 160, 542–551.
21 C. F. Windisch and G. J. Exarhos, Vibrational Spectroscopic
Study of the Site Occupancy Distribution of Cations in Nickel
Cobalt Oxides, Pacic Northwest National Laboratory
(PNNL), Richland, WA (US), 2004.
22 C. F. Windisch, K. F. Ferris and G. J. Exarhos, J. Vac. Sci.
Technol., A, 2001, 19, 1647–1651.
In summary, we have demonstrated novel alkali-promoted 3D-
NiCo2O4 nanosheets for the HCHO oxidation. Signicantly, it
could convert 95.3% of HCHO into CO2 and H2O at a low
temperature of 25 ꢁC, which is not achieved by any non-precious
metal based catalysts at such low temperature. Beneting from
the large surface area, high adsorption capacity, and high redox,
the alkali-promoted 3D-NiCo2O4 nanosheet catalyst showed
substantially high catalytic activity for HCHO oxidation. Addi-
tionally, the surface OHꢀ played the main role in the reaction
path of HCHO oxidation, which can directly react with formate
species to produce CO2 and H2O. As a consequence, the alkali-
promoted 3D-NiCo2O4 nanosheets with the vital HCHO catalytic
oxidation performance can be anticipated to be a candidate to
replace noble metal catalysts. Furthermore, this work provides
a new insight into designing low-cost and high-efficiency non-
precious metal based catalysts for low-temperature thermal
catalytic oxidation of VOCs.
23 C. F. Windisch Jr, G. J. Exarhos and S. K. Sharma, J. Appl.
Phys., 2002, 92, 5572–5574.
24 P. Nkeng, G. Poillerat, J. Koenig, P. Chartier, B. Lefez,
J. Lopitaux and M. Lenglet, J. Electrochem. Soc., 1995, 142,
1777–1783.
25 B. Lefez, P. Nkeng, J. Lopitaux and G. Poillerat, Mater. Res.
Bull., 1996, 31, 1263–1267.
26 C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen and X. W. D. Lou,
Adv. Funct. Mater., 2012, 22, 4592–4597.
Acknowledgements
This work was preliminarily supported by the National Science
Fund for Distinguished Young Scholars (21425627), the Science
and Technology Plan Project (2013B090600036), the Natural
Science Foundation of China (21461162003 and 21476271),
and Natural Science Foundation (2014KTSCX004 and
2014A030308012) of Guangdong Province, China.
27 L. Shen, Q. Che, H. Li and X. Zhang, Adv. Funct. Mater., 2014,
24, 2630–2637.
28 P. D. Battle, A. K. Cheetham and J. B. Goodenough, Mater.
Res. Bull., 1979, 14, 1013–1024.
29 M. Iliev, P. Silwal, B. Loukya, R. Datta, D. Kim, N. Todorov,
N. Pachauri and A. Gupta, J. Appl. Phys., 2013, 114,
033514–033522.
Notes and references
1 J. Xu, T. White, P. Li, C. He and Y. F. Han, J. Am. Chem. Soc.,
2010, 132, 13172–13173.
2 Q. Yuan, Z. Wu, Y. Jin, F. Xiong and W. Huang, J. Phys. Chem.
C, 2014, 118, 20420–20428.
3 L. Nie, J. Yu and J. Fu, ChemCatChem, 2014, 6, 1983–1989.
4 Q. Wang, W. Jia, B. Liu, W. Zhao, C. Li, J. Zhang and G. Xu,
Chem.–Asian J., 2012, 7, 2258–2267.
5 Z. Xu, J. Yu and M. Jaroniec, Appl. Catal., B, 2015, 163, 306–
312.
6 Z. Yan, Z. Xu, J. Yu and M. Jaroniec, Environ. Sci. Technol.,
2015, 49, 6637–6644.
7 C. Zhang, H. He and K. i. Tanaka, Catal. Commun., 2005, 6,
211–214.
30 Q. Wang, B. Liu, X. Wang, S. Ran, L. Wang, D. Chen and
G. Shen, J. Mater. Chem., 2012, 22, 21647–21653.
31 B. Cui, H. Lin, J. B. Li, X. Li, J. Yang and J. Tao, Adv. Funct.
Mater., 2008, 18, 1440–1447.
32 L. Qi, B. Cheng, J. Yu and W. Ho, J. Hazard. Mater., 2015, 15,
522–530.
33 T. Choudhury, S. Saied, J. Sullivan and A. Abbot, J. Phys. D:
Appl. Phys., 1989, 22, 1185–1195.
34 C. Shi, Y. Wang, A. Zhu, B. Chen and C. Au, Catal. Commun.,
2012, 28, 18–22.
8 H. Tan, J. Wang, S. Yu and K. Zhou, Environ. Sci. Technol.,
2015, 49, 8675–8682.
9 H. Huang and D. Y. Leung, ACS Catal., 2011, 1, 348–354.
35 H. Chen, J. He, C. Zhang and H. He, J. Phys. Chem. C, 2007,
111, 18033–18038.
J. Mater. Chem. A
This journal is © The Royal Society of Chemistry 2016