G Model
CATTOD-9878; No. of Pages10
ARTICLE IN PRESS
10
A. Antzara et al. / Catalysis Today xxx (2015) xxx–xxx
bed reactor using Ni-based oxygen carriers, J. Power Sources 192 (2009)
[12] B. Jiang, B. Dou, Y. Song, C. Zhang, B. Du, H. Chen, et al., Hydrogen production
from chemical looping steam reforming of glycerol by Ni-based oxygen
carrier in a fixed-bed reactor, Chem. Eng. J. 280 (2015) 459–467, http://dx.doi.
[13] H. Zhao, L. Guo, X. Zou, Chemical-looping auto-thermal reforming of biomass
[14] K. Zhao, F. He, Z. Huang, A. Zheng, H. Li, Z. Zhao, Three-dimensionally ordered
macroporous LaFeO3 perovskites for chemical-looping steam reforming of
[34] V.G. Deshmane, S.L. Owen, R. Abrokwah, D. Kuila, Mesoporous nanocrystalline
TiO2 supported metal (Cu, Co, Ni, Pd, Zn, and Sn) catalysts: effect of
metal–support interactions on steam reforming of methanol, J. Mol. Catal. A:
[35] J.M. Rynkowski, T. Paryjczak, M. Lenik, On the nature of oxidic nickel phases
in NiO/␥-Al2O3 catalysts, Appl. Catal. A: Gen. 106 (1993) 73–82, http://dx.doi.
[36] G. Li, L. Hu, J.M. Hill, Comparison of reducibility and stability of
alumina-supported Ni catalysts prepared by impregnation and
[37] P. Kim, Y. Kim, H. Kim, I.K. Song, J. Yi, Synthesis and characterization of
mesoporous alumina with nickel incorporated for use in the partial oxidation
of methane into synthesis gas, Appl. Catal. A: Gen. 272 (2004) 157–166,
[15] F. García-Labiano, E. García-Díez, L.F. de Diego, A. Serrano, A. Abad, P. Gayán,
et al., Syngas/H2 production from bioethanol in a continuous
chemical-looping reforming prototype, Fuel Process. Technol. 137 (2015)
[16] M.M. Hossain, H.I. de Lasa, Chemical-looping combustion (CLC) for inherent
CO2 separations – a review, Chem. Eng. Sci. 63 (2008) 4433–4451, http://dx.
[38] C. Li, Y.-W. Chen, Temperature-programmed-reduction studies of nickel
oxide/alumina catalysts: effects of the preparation method, Thermochim.
[39] Q.G. Yan, W.Z. Weng, H.L. Wan, H. Toghiani, R.K. Toghiani, C.U. Pittman,
Activation of methane to syngas over a Ni/TiO2 catalyst, Appl. Catal. A: Gen.
[40] S.W. Ho, C.Y. Chu, S.G. Chen, Effect of thermal treatment on the nickel state
and CO hydrogenation activity of titania-supported nickel catalysts, J. Catal.
[42] A. Antzara, E. Heracleous, A.A. Lemonidou, Improving the stability of synthetic
CaO-based CO2 sorbents by structural promoters, Appl. Energy 156 (2015)
[43] A. Al-Ubaid, E.E. Wolf, Steam reforming of methane on reduced
non-stoichiometric nickel aluminate catalysts, Appl. Catal. 40 (1988) 73–85,
[44] J.R. Rostrup-Nielsen, Activity of nickel catalysts for steam reforming of
[17] N.R. McGlashan, The thermodynamics of chemical looping combustion
applied to the hydrogen economy, Int. J. Hydrogen Energy 35 (2010)
[18] L.-S. Fan, L. Zeng, W. Wang, S. Luo, Chemical looping processes for CO2
capture and carbonaceous fuel conversion – prospect and opportunity,
[19] M. Rydén, P. Ramos, H2 production with CO2 capture by sorption enhanced
chemical-looping reforming using NiO as oxygen carrier and CaO as CO2
[20] A. Antzara, E. Heracleous, D.B. Bukur, A.A. Lemonidou, Thermodynamic
analysis of hydrogen production via chemical looping steam methane
reforming coupled with in situ CO2 capture, Int. J. Greenh. Gas Control 32
[21] A. Abad, J. Adánez, F. García-Labiano, L.F. de Diego, P. Gayán, J. Celaya,
Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based
oxygen carriers in chemical-looping combustion, Chem. Eng. Sci. 62 (2007)
[45] J. Rostrup-Nielsen, Mechanisms of carbon formation on nickel-containing
[22] J. Adánez, L.F. De Diego, F. García-Labiano, P. Gayán, A. Abad, J.M. Palacios,
Selection of oxygen carriers for chemical-looping combustion, Energy Fuels
[23] H.R. Forutan, E. Karimi, A. Hafizi, M.R. Rahimpour, P. Keshavarz, Expert
representation chemical looping reforming: a comparative study of Fe, Mn, Co
and Cu as oxygen carriers supported on Al2O3, J. Ind. Eng. Chem. 21 (2014)
[24] M. Tang, L. Xu, M. Fan, Progress in oxygen carrier development of
methane-based chemical-looping reforming: a review, Appl. Energy 151
[25] K. Shah, B. Moghtaderi, T. Wall, Selection of suitable oxygen carriers for
chemical looping air separation: a thermodynamic approach, Energy Fuels 26
[46] C. Bartholomew, Mechanism of catalyst deactivation, Appl. Catal. A: Gen. 212
[47] C.H. Bartholomew, Catalysis reviews: science and reforming and methanation
carbon deposition in steam reforming and methanation, Catal. Rev. Sci. Eng.
[48] J.R. Rostrup-Nielsen, J. Sehested, J.K. Noerskov, Hydrogen and synthesis gas by
[49] N.V. Parizotto, K.O. Rocha, S. Damyanova, F.B. Passos, D. Zanchet, C.M.P.
Marques, et al., Alumina-supported Ni catalysts modified with silver for the
steam reforming of methane: effect of Ag on the control of coke formation,
[26] L.F. de Diego, M. Ortiz, J. Adánez, F. García-Labiano, A. Abad, P. Gayán,
Synthesis gas generation by chemical-looping reforming in a batch fluidized
bed reactor using Ni-based oxygen carriers, Chem. Eng. J. 144 (2008)
[50] V. Nichele, M. Signoretto, F. Menegazzo, A. Gallo, V. Dal Santo, G. Cruciani,
et al., Glycerol steam reforming for hydrogen production: design of Ni
supported catalysts, Appl. Catal. B: Environ. 111–112 (2012) 225–232, http://
[27] M. Rydén, A. Lyngfelt, T. Mattisson, Synthesis gas generation by
chemical-looping reforming in a continuously operating laboratory reactor,
[28] T. Mattisson, A. Järdnäs, A. Lyngfelt, Reactivity of some metal oxides
supported on alumina with alternating methane and oxygen – application for
chemical-looping combustion, Energy Fuels 17 (2003) 643–651, http://dx.doi.
[29] T. Mattisson, M. Johansson, A. Lyngfelt, The use of NiO as an oxygen carrier in
[30] P. Gayán, L.F. de Diego, F. García-Labiano, J. Adánez, A. Abad, C. Dueso, Effect
of support on reactivity and selectivity of Ni-based oxygen carriers for
[31] M. Rydén, M. Johansson, A. Lyngfelt, T. Mattisson, NiO supported on Mg–ZrO2
as oxygen carrier for chemical-looping combustion and chemical-looping
[51] K. Takehira, T. Ohi, T. Miyata, M. Shiraga, T. Sano, Steam reforming of CH4 over
Ni–Ru catalysts supported on Mg–Al mixed oxide, Top. Catal. 42–43 (2007)
[52] R.V. Siriwardane, J.A. Poston Jr., E.P. Fisher, Interaction of hydrogen sulfide
with Zr0.92Y0.08O2−ı/40% Ni cermet, Appl. Surf. Sci. 243 (2005) 40–54, http://
[54] M.A. Nieva, M.M. Villaverde, A. Monzón, T.F. Garetto, A.J. Marchi,
Steam-methane reforming at low temperature on nickel-based catalysts,
[56] R. Takahashi, S. Sato, T. Sodesawa, M. Yoshida, S. Tomiyama, Addition of
zirconia in Ni/SiO2 catalyst for improvement of steam resistance, Appl. Catal.
[32] Q. Zafar, T. Mattisson, B. Gevert, Integrated hydrogen and power production
with CO2 capture using chemical-looping reforming redox reactivity of
particles of CuO, Mn2O3, NiO, and Fe2O3 Using SiO2 as a support, Ind. Eng.
[33] L. Silvester, A. Antzara, G. Boskovic, E. Heracleous, A.A. Lemonidou, D.B. Bukur,
NiO supported on Al2O3 and ZrO2 oxygen carriers for chemical looping steam
methane reforming, Int. J. Hydrogen Energy 40 (2015) 7490–7501, http://dx.
[57] P. Cho, T. Mattisson, A. Lyngfelt, Carbon formation on nickel and iron
oxide-containing oxygen carriers for chemical-looping combustion, Ind. Eng.
[58] V. Dupont, A.B. Ross, I. Hanley, M.V. Twigg, Unmixed steam reforming of
methane and sunflower oil: a single-reactor process for H2-rich gas, Int. J.
Please cite this article in press as: A. Antzara, et al., Activity study of NiO-based oxygen carriers in chemical looping steam methane