Please do not adjust margins
RSC Advances
DOI: 10.1039/C6RA06400K
COMMUNICATION
RSC Advances
combustion of DCM was considered related to the synergy Specialized Research Fund for the Doctoral Program of Higher
between acidic role and oxidization. The acidity is favorable for Education (NO. 20133317110004).
activating CꢀCl bonds. Thus, FTIRꢀpyridine was characterized
the acidity on the catalysts surface (see Fig.3), measured after
evacuation at 30°C, 200°C and 400 °C corresponding
respectively to the amount of weak, midꢀstrong and strong
acidity. The amount of Brønsted sites (B sites) and Lewis
Notes and references
1
2
3
4
5
6
7
8
M. J. Morra, V. Borek, J. Koolpe.,J. Environ. Qual., 2000, 29, 706.
J. J. Spivey, Ind. Eng. Chem. Res., 1987, 26, 2165.
J. N. Armor, Appl. Catal., B, 1992, 1, 221.
J. Hermia, S. Vigneron,Catal. Today., 1993, 17, 349.
X. Zhang, H. Lu, H. Huang, RSC. Adv., 2015, 5, 79192.
Q. Dai, S Bai, X Wang, G Lu. Appl. Catal., B, 2013,129, 580.
Y. Wang, H Liu, S. Wang, M. Luo, J. Lu, J. Catal., 2014, 311,314.
sites(L sites) was determined by the integration of the area of
ꢀ1 23,41
the peaks at 1537 and 1446 cm ,
respectively to pyridine adsorbed on B sites and L sites. We
find a very interesting phenomenon. In particular, the TiO ꢀHA
corresponding
2
catalyst (see Fig.3a), possesses both B sites and L sites, and the
increase in the evacuation temperature of pyridine induces a
slight decrease in the peak of adsorbed pyridine on B acid sites
and large decrease in L acid sites at 400°C.This phenomenon
reveals that the B sites of the catalyst are mainly strong B sites
and the L sites are mostly midꢀstrong L sites with a few strong
S. Pitk
Appl. Catal., B, 2013, 138–139, 33.
S. Pitk aho, L. Matejova, S. Ojala, J. Gaalova and R. L. Keiski, Appl.
Catal., B, 2012, 113–114, 150.
ӓaho, T. Nevanperӓ, L. Matejova, S. Ojala and R. L. Keiski,
9
ӓ
L sites. In contrast, TiO
B possesses a certain amount of midꢀstrong L sites whereas the
L sites of the TiO
Fig.3bꢀc). These observations indicate that the amount of midꢀ
strong acid sites of the catalyst surface is corresponding with 12 Q. Dai, L. Yin, S. Bai, W. Wang, X. Wang, X. Gong, G. Lu. Appl.
the catalytic activity. TiO ꢀHA with strong B acid sites exhibits
Catal., B, 2016, 182, 598.
superior activity than TiO
ꢀB who has no B acid sites, which 13 Y. Wang, A. Jia, M. Luo, J. Lu. Appl. Catal., B, 2015, 165, 477.
4 X. Wang, L. Ran, Y. Dai, Y. Lu, Q. Dai. J. Colloid Interface Sci.
2
ꢀB and TiO
2
ꢀR exhibit no B sites; TiO
2
ꢀ
10 P. Yang, S. Yang, Z. Shi, Z. Meng, R. Zhou. Appl. Catal., B, 2015,
162, 227.
2
ꢀR catalyst is mainly weak L sites (see 11 S. Cao, H. Wang, F. Yu, M. Shi, S. Chen, X. Weng, Y. Liu, Z. Wu, J.
Colloid Interface Sci., 2016, 463, 233.
2
2
1
,
confirmed that the exposure of more B acid sites on the catalyst
014, 426, 324.
2
3
2
surface results in an enhancement of catalytic performances.
Based on the above discussion and considerable literatures
5
,
15 Y. Dai, X. Wang, Q. Dai, D. Li. Appl. Catal., B, 2012, 111ꢀ112, 141.
16 A. Aranzabal, M. RomeroꢀS′aez, U. Elizundia, J. R. Gonz′alezꢀ
Velasco and J. A. Gonz′alezꢀMarcos, J. Catal., 2012, 296,165.
1
1
1
7, 42, 43
,
a plausible reaction mechanism for the catalytic
combustion of DCM over TiO catalyst was proposed. The first
2
7 I. Maupin, L. Pinard, J. Mijoin, P. Magnox. J. Catal., 2012, 291, 104.
8 D. M. Papenmeier, J. A. Rossin, Ind. Eng. Chem. Res., 1994, 33,
step was the reaction between a DCM molecule and one
hydroxyl group that leads to the rupture of C–Cl bonds and
freeing one HCl (or the Cl species adsorbed on the surface).
The adsorbed intermediate species could be attacked by the
adjacent activate oxygen species, the chlorine atom is
substituted by oxygen atoms, leading to adsorbed formaldehyde
formation and hemiacetal species, which disproportionate into
methoxy species and formate species. The formaldehyde
species could generate major methoxy species when this
3
094.
1
9 R.W. van den Brink, P. Mulder, R. Louw, G. Sinquin, C. Petit, J.P.
Hindermann, J. Catal., 1998, 180, 153.
0 L Ran, Z. Wang, X. Wang, Appl. Catal., A, 2014, 470, 442.
1 R. LópezꢀFonseca, B. de Rivas, J. I. GutiérrezꢀOrtiz, A. Aranzabal, J.
R. GonzálezꢀVelasco. Appl. Catal., B, 2003, 41, 31.
2
2
2
2
2 P. S. Chintawar, H. L. Greene, Appl. Catal., B, 1997, 13, 81.
3 F. Bertinchamps, C. G. Refoire, E. M. Gaigneaux, Appl. Catal., B
006, 66, 10.
4 R. LópezꢀFonseca, A. Aranzabal, J. I. GutierrezꢀOrtiz, Appl. Catal.,
, 2001, 30(3ꢀ4), 303.
25 Q. Huang, X. Xue, R. Zhou, J. Mol. Catal. , A, 2010, 331(1ꢀ2), 130.
,
1
0 19
species accumulated a certain amount.
property of TiO ꢀHA, the intermediate formaldehyde species
could not be immediately oxidized. Accordingly, amounts of
Giventhe weak redox
2
2
2
B
CH Cl at low temperature were generated.
3
Notably, the interpretation of the superior activity of the
2
6 A. Aranzabal, J. A. GonzalezꢀMarcos, P. Magnoux, et al, Appl.
2
TiO ꢀHA catalyst remains in the preliminary stage.
Catal., B, 2009, 88, 553.
Subsequently, we will conduct several works to provide further 27 H. Y. Huang, R. T. Yang, Langmuir, 2001, 17, 4997.
explanation and basis for research on the modification of 28 G. Busca, L. Lietti, G. Ramis, Appl. Catal., B, 1998, 18, 1.
hollow TiO
stability at low temperatures.
Hollow anatase TiO
2
surface to improve selectivity to CO
2
and ensure 29 J. P. Chen, R. T. Yang, J. Catal., 1993, 139, 277.
30 M. Guo, L. Li, H. Lin, Y. Zuo, X. Huang and G. Li,Chem. Commun.
,
nanoparticle is an excellent catalyst for
2013, 49, 11752.
2
DCM combustion, and shows the highest activity among all 31 X. Shen, J. Zhang, B. Tian,J. Hazard. Mater., 2011, 192, 651.
employed catalysts and exhibits a good selectivity to HCl and 32 Q. Dai, X. Wang and G. Lu, Appl. Catal., B, 2008, 81, 192.
(
2 2
CO +CO). The superior activity of the hollow TiO
catalyst 33 L. Y. Hsu, H. Teng, Appl. Catal., B, 2001, 42, 69.
could be attributed to its high surface area and larger amount of 34 X. S. Shang, G. R. Hu, C. H, J. P. Zhao, F. W. Zhang, J. Ind. Eng.
Chem., 2012, 18, 513.
moderately strong acidic sites. This work may open a new
direction of possibility for development of metal oxide catalysts
for the catalytic combustion of industrial alkyl chlorides.
3
3
3
3
5
L. Ran, Z. Qin, Z. Wang, X. Wang, Q. Dai, Catal. Commun., 2013,
7, 5.
6 Y. Gu, Y. Yang, Y. Qiu, K. Sun, X. Xu, Catal. Commun., 2010, 12,
77.
7 L. Intriago, E. Diaz, S. Ordonez, A. Vega, Micropor. Mesopor. Mat.,
006, 91, 161.
3
2
Acknowledgements
2
8 J. I. GutiérrezꢀOrtiz, R. LópezꢀFonseca, U. Aurrekoetxea, J.R.
We would like to acknowledge the financial support from the
GonzálezꢀVelasco, J. Catal., 2003, 218, 148.
Natural Science Foundation of China (NO. 21107096, 21506194), 39 J. Haber, T. Machej, M. Derewinski, R. Janik, J. Krysciak, H.
Zhejiang Provincial Natural Science Foundation of China
Sadowska, J. Janas, Catal. Today., 1999, 54, 47.
NO.Y14E080008, Y16B070025), the Commission of Science and 40 M. A. G. Hevia, A. P. Amrute, T. Schmidt, J. PérezꢀRam, J. Catal.,
(
Technology of Zhejiang province (NO. 2013C03021) and
2010, 276, 141.
4
1 C. A. Emeis, J. Catal., 1993, 141, 347.
4
|RSC Adv., 2016, 00, 1-5
This journal is © The Royal Society of Chemistry 2016
Please do not adjust margins