10.1002/cctc.201700015
ChemCatChem
COMMUNICATION
Conclusions
[14] A. Monney, E. Barsch, P. Sponholz, H. Junge, R. Ludwig, M. Beller,
Chem. Commun. 2014, 50, 707-709.
We developed an iridium-catalyzed dehydrogenation of aqueous
methanol under mild conditions. Contrary to most known
organometallic catalysts for this transformation no strong basic
conditions are necessary for sufficient catalytic activity.
[15] P. Hu, Y. Diskin-Posner, Y. Ben-David, D. Milstein, ACS Catal. 2014, 4,
2649-2652.
[16] a) G. Zeng, S. Sakaki, K.-i. Fujita, H. Sano, R. Yamaguchi, ACS Catal.
2014, 4, 1010-1020; b) K.-i. Fujita, N. Tanino, R. Yamaguchi, Org. Lett.
2006, 9, 109-111; c) Y. Li, P. Sponholz, M. Nielsen, H. Junge, M. Beller,
ChemSusChem 2015, 8, 804-808.
[17] a) R. Tanaka, M. Yamashita, K. Nozaki, J. Am. Chem. Soc. 2009, 131,
14168-14169; b) S. Oldenhof, M. Lutz, B. de Bruin, J. Ivar van der Vlugt,
J. N. H. Reek, Chem. Sci. 2015, 6, 1027-1034; c) E. Fujita, J. T.
Muckerman, Y. Himeda, Biochim. Biophys. Acta 2013, 1827, 1031-
1038; d) S. Oldenhof, B. de Bruin, M. Lutz, M. A. Siegler, F. W.
Patureau, J. I. van der Vlugt, J. N. H. Reek, Chem. Eur. J. 2013, 19,
11507-11511; e) J. H. Barnard, C. Wang, N. G. Berry, J. Xiao, Chem.
Sci. 2013, 4, 1234-1244; f) Y. Maenaka, T. Suenobu, S. Fukuzumi,
Energy Environ. Sci. 2012, 5, 7360-7367; g) R. Tanaka, M. Yamashita,
L. W. Chung, K. Morokuma, K. Nozaki, Organometallics 2011, 30,
6742-6750; h) Y. Himeda, Green Chem. 2009, 11, 2018-2022; i) S.
Fukuzumi, T. Kobayashi, T. Suenobu, J. Am. Chem. Soc. 2010, 132,
1496-1497; j) M. Iguchi, Y. Himeda, Y. Manaka, K. Matsuoka, H.
Kawanami, ChemCatChem 2016, 8, 886-890.
General procedure
All reactions were performed under argon with exclusion of air. A
solution of 10 ml MeOH and H2O in a given ratio, containing a
defined amount of base, was heated to the desired temperature
and let equilibrate for 30 minutes. The catalyst (4.18 µmol) was
added which set the starting point for measuring the evolved gas
volume. Gas evolution was measured by manual or automatic
gas burettes. The identity of the gas components and their ratio
was determined by gas-phase chromatography. Plots of volume
amount of gas evolved as a function of time for experiments
reported in Tables can be found in the supporting information.
[18] K.-i. Fujita, R. Kawahara, T. Aikawa, R. Yamaguchi, Angew. Chem. Int.
Ed. 2015, 54, 9057-9060.
Acknowledgements
[19] E. Alberico, P. Sponholz, C. Cordes, M. Nielsen, H. J. Drexler, W.
Baumann, H. Junge, M. Beller, Angew. Chem. Int. Ed. 2013, 52, 14162-
14166.
This work has been supported by the state of Mecklenburg-
Vorpommern and the BMBF. Further financial support was
provided by the BMWi within the project “Metha-Cycle”
(03ET6071A). In addition, we thank A. Agapova for experimental
support.
[20] a) E. A. Bielinski, M. Förster, Y. Zhang, W. H. Bernskoetter, N. Hazari,
M. C. Holthausen, ACS Catalysis 2015, 5, 2404-2415; b) E. A. Bielinski,
P. O. Lagaditis, Y. Zhang, B. Q. Mercado, C. Wurtele, W. H.
Bernskoetter, N. Hazari, S. Schneider, J. Am. Chem. Soc. 2014, 136,
10234-10237.
References
[21] For leading references in pincer chemistry see: a) The Privileged
Pincer-Metal Platform: Coordination Chemistry & Applications (Eds: G.
Van Koten, R. A Gossage), Topics in Organometallic Chemistry, Vol.
54, Springer, Berlin-Heidelberg, 2016; b) H. A. Younus, W. Su, N.
Ahmad, S. Chen, F. Verpoort, Adv. Synth. Catal. 2015, 357, 283 – 330;
[1]
[2]
N. Armaroli, V. Balzani, ChemSusChem 2011, 4, 21-36.
T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets,
D. G. Nocera, Chem. Rev. 2010, 110, 6474-6502.
[3]
[4]
F. Schüth, Chem. Ing. Tech. 2011, 83, 1984-1993.
c)
Pincer
and
Pincer-Type
Complexes:
Applications
in
M. Carmo, D. L. Fritz, J. Mergel, D. Stolten, Int. J. Hydrogen Energy
2013, 38, 4901-4934.
Organic Synthesis and Catalysis (Eds: K. J. Szabo, O. F. Wendt),
2014, 114, 12024-12087; e) Organometallic Pincer Chemistry (Eds: G.
van Koten, D. Milstein) Topics in Organometallic Chemistry, Vol. 40,
Springer, Berlin-Heidelberg, 2013; e) The Chemistry of Pincer
Compounds (Eds: D. Morales-Morales, C. M. Jensen), Elsevier Science,
The Netherlands, 2007.
[5]
[6]
E. Alberico, M. Nielsen, Chem. Commun. 2015, 51, 6714-6725.
a) C. Gunanathan, D. Milstein, Science 2013, 341, 1229712; b) M.
Trincado, D. Banerjee, H. Grutzmacher, Energy Environ. Sci. 2014, 7,
2464-2503; c) M. Grasemann, G. Laurenczy, Energy Environ Sci 2012,
5, 8171-8181; d) D. Teichmann, W. Arlt, P. Wasserscheid, R.
Freymann, Energy Environ. Sci. 2011, 4, 2767-2773; e) A. Boddien, F.
Gärtner, M. Nielsen, S. Losse, H. Junge, in Comprehensive Inorganic
Chemistry II (Second Edition) (Ed.: K. Poeppelmeier), Elsevier,
Amsterdam, 2013, pp. 587-603.
[22] S. Elangovan, B. Wendt, C. Topf, S. Bachmann, M. Scalone, A.
Spannenberg, H. Jiao, W. Baumann, K. Junge, M. Beller, Adv. Synth.
Catal. 2016, 358, 820-825.
[23] a) Z. E. Clarke, P. T. Maragh, T. P. Dasgupta, D. G. Gusev, A. J. Lough,
K. Abdur-Rashid, Organometallics 2006, 25, 4113-4117; b) S. Bi, Q.
Xie, X. Zhao, Y. Zhao, X. Kong, J. Organomet. Chem. 2008, 693, 633-
638; c) X. Chen, W. Jia, R. Guo, T. W. Graham, M. A. Gullons, K.
Abdur-Rashid, Dalton Trans. 2009, 1407-1410; d) N. Andrushko, V.
Andrushko, P. Roose, K. Moonen, A. Börner, ChemCatChem 2010, 2,
640-643; e) M. Bertoli, A. Choualeb, A. J. Lough, B. Moore, D. Spasyuk,
D. G. Gusev, Organometallics 2011, 30, 3479-3482; f) M. Nielsen, A.
Kammer, D. Cozzula, H. Junge, S. Gladiali, M. Beller, Angew. Chem.
Int. Ed. 2011, 50, 9593-9597; g) T. J. Schmeier, G. E. Dobereiner, R. H.
Crabtree, N. Hazari, J. Am. Chem. Soc. 2011, 133, 9274-9277; h) M.
Nielsen, H. Junge, A. Kammer, M. Beller, Angew. Chem. Int. Ed. 2012,
51, 5711-5713; i) K. Junge, B. Wendt, H. Jiao, M. Beller,
ChemCatChem 2014, 6, 2810-2814; j) P. Sponholz, D. Mellmann, C.
Cordes, P. G. Alsabeh, B. Li, Y. Li, M. Nielsen, H. Junge, P. Dixneuf, M.
Beller, ChemSusChem 2014, 7, 2419-2422; k) S. T. Ahn, E. A. Bielinski,
E. M. Lane, Y. Chen, W. H. Bernskoetter, N. Hazari, G. T. R. Palmore,
Chem Commun. 2015, 51, 5947-5950; l) P. A. Dub, B. L. Scott, J. C.
Gordon, Organometallics 2015, 34, 4464-4479; m) Y. Li, M. Nielsen, B.
Li, P. H. Dixneuf, H. Junge, M. Beller, Green Chem. 2015, 17, 193-198;
n) L. Zhang, Z. Han, X. Zhao, Z. Wang, K. Ding, Angew. Chem. Int. Ed.
2015, 54, 6186-6189.
[7]
[8]
G. A. Olah, Angew. Chem. 2005, 117, 2692-2696.
a) G. A. Olah, Angew. Chem. Int. Ed. 2013, 52, 104-107; b) F. Liao, Z.
Zeng, C. Eley, Q. Luꢀ, X. Hong, S. C. E. Tsang, Angew. Chem. Int. Ed.
2012, 51, 5832-5836; c) S. Wesselbaum, T. vom Stein, J.
Klankermayer, W. Leitner, Angew. Chem. Int. Ed. 2012, 51, 7499-7502;
d) S. Wesselbaum, V. Moha, M. Meuresch, S. Brosinski, K. M. Thenert,
J. Kothe, T. v. Stein, U. Englert, M. Holscher, J. Klankermayer, W.
Leitner, Chem. Sci. 2015, 6, 693-704; e) J. Klankermayer, S.
Wesselbaum, K. Beydoun, W. Leitner, Angew. Chem. Int. Ed. 2016, 55,
7296-7343.
[9]
R. D. Cortright, R. R. Davda, J. A. Dumesic, Nature 2002, 418, 964-967.
[10] R. M. Navarro, M. A. Peña, J. L. G. Fierro, Chem. Rev. 2007, 107,
3952-3991.
[11] S. Shinoda, H. Itagaki, Y. Saito, Chem. Commun. 1985, 860-861.
[12] a) M. Nielsen, E. Alberico, W. Baumann, H.-J. Drexler, H. Junge, S.
Gladiali, M. Beller, Nature 2013, 495, 85-89; b) E. Alberico, A. J. J.
Lennox, L. K. Vogt, H. Jiao, W. Baumann, H.-J. Drexler, M. Nielsen, A.
Spannenberg, M. P. Checinski, H. Junge, M. Beller J. Am. Chem. Soc.
2016, 138, 14890-14904.
[13] R. E. Rodríguez-Lugo, M. Trincado, M. Vogt, F. Tewes, G. Santiso-
Quinones, H. Grützmacher, Nat. Chem. 2013, 5, 342-347.
This article is protected by copyright. All rights reserved.