Dai et al.
FULL PAPER
Table 4 The catalytic performance of various Co/SiO2 catalysts on atmospheric pressure (250 ℃, 1 bar, H2/CO=2 and GHSV=2000
mL•g1•h1)
Product selectivity (C%, CO2-free)
Olefin/Paraffin ratio
Sample
CO Conversion/C%
=
C2-4
o
CH4
17.2
7.6
C2-4
9.8
4.7
2.0
C5++ROH
65.9
C2
C3
C4
Co/SiO2-0Na
Co/SiO2-0.2Na
Co/SiO2-1Na
17.7
3.1
7.1
0.1
8.7
10.8
1.5
0.6
19.6
27.6
68.1
20.2
19.8
13.1
13.6
2.8
10.2
60.2
and Co/SiO2-1Na catalysts were also evaluated at at-
mospheric pressure as showed in Table 4. All the sam-
ples with the Co2C phase in our study showed higher
O/P ratios than unpromoted Co/SiO2. However, the O/P
ratios were still lower than those of Co2C nanoprisms
with exposed (101) and (020) facets.[30] In addition,
higher CH4 selectivity was obtained for sphere-like
Co2C. It further illustrated that the morphology and ex-
posed facet had strong effect on the catalytic perfor-
mance of Co2C for syngas conversion.
and the Chinese Academy of Sciences (No. QYZDB-
SSW-SLH035, Youth Innovation Promotion Associa-
tion).
References
[1] Iglesia, E. Appl. Catal. A 1997, 161, 59.
[2] Saul, E. C.; Richard, G. C.; Graham, J. H.; Terblanche, S. P.; Michael,
M. T. Nature 1989, 339, 129.
[3] Zhang, Q.; Deng, W.; Wang, Y. J. Energy Chem. 2013, 22, 27.
[4] Bezemer, G. L.; Bitter, J. H.; Kuipers, H. P. C. E.; Ooster beek, H.;
Holewijn, J. E.; Xu, X. D.; Kaptijn, F.; Dillen, A. J. V.; Jong, K. P. D.
J. Am. Chem. Soc. 2006, 128, 3956.
[5] Tian, H.; Li, X. Y.; Zeng, L.; Gong, J. L. ACS Catal. 2015, 5, 4959.
[6] Xiong, H.; Zhang, Y.; Liew, K. Y.; Li, J. L. J. Mol. Catal. A: Chem.
2008, 95, 68.
[7] Borg, O.; Eri, S.; Blekkan, E. A.; Storsaeter, S.; Wigum, H.; Rytter,
E.; Holmen, A. J. Catal. 2007, 248, 89.
[8] Dsa, A. R. D. L.; Lucas, A. D.; Valverde, J. L.; Romero, A.; Mon-
teagudo, I.; Coca, P.; Sanchez, P. Catal. Today 2011, 167, 96.
[9] Jongeomjit, B. J. Catal. 2003, 215, 66.
[10] Xiang, Y. Z.; Barbosa, R.; Li, X. N.; Kruse, N. ACS Catal. 2015, 5,
2929.
[11] Xiao, K.; Qi, X. Z.; Bao, Z. D.; Wang, X. X.; Zhong, L. S.; Fang, K.
G.; Lin, M. G.; Sun, Y. H. Catal. Sci. Technol. 2013, 3, 1591.
[12] Dinse, A.; Aigner, M.; Ulbrich, M.; Johnson, G. R.; Bell, A. T. J.
Catal. 2012, 288, 104.
[13] Johnson, G. R.; Werner, S.; Bell, A. T. ACS Catal. 2015, 5, 5888.
[14] Shimura, K.; Miyazawa, T.; Hanaoka, T.; Hirata, S. Appl. Catal. A
2015, 494, 1.
[15] Werner, S.; Johnson, G. R.; Bell, A. T. ChemCatChem 2014, 6, 2881.
[16] Anton, J.; Nebel, J.; Song, H. Q.; Froese, C.; Weide, P.; Ruland, H.;
Muhler, M.; Kaluza, S. J. Catal. 2016, 335, 175.
[17] Cheng, K.; Ordomsky, V. V.; Legras, B.; Virginie, M.; Paul, S.;
Wang, Y.; Khodakov, A. Y. Appl. Catal. A 2015, 502, 204.
[18] Galvis, H. M. T.; Koejen, A. C. J.; Bitter, J. H.; Davidian, T.; Ruit-
enbeek, M.; Dugulan, A. L.; de Jong, K. P. J. Catal. 2013, 303, 22.
[19] Ribeiro, M.; Jacobs, G.; Davis, B. H.; Cronauer, D. C.; Kropf, A. J.;
Marshall, C. L. J. Am. Chem. Soc. 2010, 114, 7895.
[20] Chun, D. H.; Park, J. C.; Lee, H.; Yang, J. G.; Hong, S. J.; Jung, H.
Catal. Lett. 2013, 143, 1035.
[21] Eliseev, O. L.; Tsapkina, M. V.; Dementeva, O. S.; Davydov, P. E.;
Kazakov, A. V.; Lapidus, A. L. Kinet. Catal. 2013, 54, 207.
[22] Xiong, H. F.; Motchelaho, M. A. M.; Moyo, M.; Jewell, L. L.; Co-
ville, N. J. Fuel 2015, 150, 687.
[23] Lillebø, A. H.; Patanou, E.; Yang, J.; Blekkan, E. A.; Holmen, A.
Catal. Today 2013, 215, 60.
[24] Ishida, T.; Yangihara, T.; Liu, X. H.; Ohashi, H.; Hamasski, A.;
Honma, T.; Oji, H.; Yokoyama, T.; Tokunaga, M. Appl. Catal. A
2013, 458, 145.
Conclusions
The effect of sodium on the structure and catalytic
performance of Co/SiO2 for the Fischer-Tropsch syn-
thesis was investigated in details. The samples with dif-
ferent Na loadings were characterized by various meth-
ods. The results showed that Na could change the struc-
ture of the catalyst, resulting in decreasing surface area
and particles size and increasing the reduction tempera-
ture. From the XRD and TEM results of spent samples,
the addition of Na promoted the formation of Co2C with
sphere-like morphology.
CO conversion and products selectivity were
strongly influenced by the Na promoter. The addition of
Na greatly decreased the catalytic activity and increased
CO2 selectivity. However, oxygenates selectivity, espe-
cially alcohol selectivity, increased when Na was added.
It seemed that the addition of Na led to the transfor-
mation of the catalytic performance from typical FT
reaction to oxygenate formation. The hydrocarbon
products shifted to lower carbon numbers for
Na-promoted samples. However, the oxygenate chain
growth factors slightly increased once Na was added. In
addition, the chain growth factors of all products almost
kept as constant for the promoted samples with different
Na loadings. The O/P ratios of samples with Na were
much higher than those without Na. The metallic cobalt
shifted to cobalt carbide during the reaction process due
to the presence of Na, indicating that Na could promote
the formation of Co2C serving as the active site for ox-
ygenate and olefin formation.
Acknowledgement
[25] Khobragade, M.; Majhi, S.; Pant, K. K. Appl. Energ. 2012, 94, 385.
[26] Pei, Y. P.; Liu, J. X.; Zhao, Y. H.; Ding, Y. J.; Liu, T.; Dong, W. D.;
Zhu, H. J.; Su, H. Y.; Yan, L.; Li, J. L.; Li, W. X. ACS Catal. 2015, 5,
3620.
This work has been supported by the National Natu-
ral Science Foundation of China (Nos. 91545112,
21573271, 21403278), Shanghai Municipal Science and
Technology Commission, China (No. 15DZ1170500)
[27] Karaca, H.; Hong, J. P.; Fongarland, P.; Roussel, P.; Griboval con-
8
© 2017 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2017, XX, 1—9