10.1002/anie.201915140
Angewandte Chemie International Edition
RESEARCH ARTICLE
[14]
[15]
S. Liu, Q. Liu, J.-L. Luo, ACS Catal. 2016, 6, 6219–6228.
nanocomposites (cermets) for redox cycling applications[30]. On
the other hand, the ability to disperse metal nanoparticles within
oxides could enable new opportunities in the design of magnetic
or thermoelectric materials.
J. T. S. Irvine, D. Neagu, M. C. Verbraeken, C. Chatzichristodoulou,
C. Graves, M. B. Mogensen, Nature Energy 2016, 1, 15014.
N. W. Kwak, S. J. Jeong, H. G. Seo, S. Lee, Y. Kim, J. K. Kim, P.
Byeon, S.-Y. Chung, W. Jung, Nature Communications 2018, 9, 4829.
Y. Zhu, W. Zhou, R. Ran, Y. Chen, Z. Shao, M. Liu, Nano Lett. 2016,
16, 512–518.
O. Kwon, S. Sengodan, K. Kim, G. Kim, H. Y. Jeong, J. Shin, Y.-W.
Ju, J. W. Han, G. Kim, Nature Communications 2017, 8, 15967.
D. Zubenko, S. Singh, B. A. Rosen, Applied Catalysis B:
Environmental 2017, 209, 711–719.
Y. Gao, J. Wang, Y.-Q. Lyu, K. Lam, F. Ciucci, J. Mater. Chem. A
2017, 5, 6399–6404.
R. Thalinger, M. Gocyla, M. Heggen, R. Dunin-Borkowski, M.
Grünbacher, M. Stöger-Pollach, D. Schmidmair, B. Klötzer, S. Penner,
Journal of Catalysis 2016, 337, 26–35.
R. Michalsky, V. Botu, C. M. Hargus, A. A. Peterson, A. Steinfeld,
Advanced Energy Materials 2015, 5, 1401082.
N. Xu, X. Li, X. Zhao, J. B. Goodenough, K. Huang, Energy Environ.
Sci. 2011, 4, 4942–4946.
I. S. Metcalfe, B. Ray, C. Dejoie, W. Hu, C. Leeuwe, C. Dueso, F.
Garcia-Garcia, C.-M. Mak, E. I. Papaioannou, C. Thompson, et al.,
2.
[16]
[17]
[18]
[19]
[20]
[21]
Finally, the combined effect of high oxygen storage capacity and
fast, reversible oxygen release/incorporation enable even the
deepest embedded particles to be accessible to the gas stream.
This, coupled with surface active sites, has enabled to bypass
conventional degradation and poisoning mechanisms and tackle
challenging catalytic transformations such as CH4 conversion to
syngas.
[22]
[23]
[24]
Acknowledgements
[25]
[26]
[27]
[28]
[29]
P. Tang, Q. Zhu, Z. Wu, D. Ma, Energy Environ. Sci. 2014, 7, 2580–
2591.
B. Christian Enger, R. Lødeng, A. Holmen, Applied Catalysis A:
General 2008, 346, 1–27.
A. Thursfield, A. Murugan, R. Franca, I. S. Metcalfe, Energy Environ.
Sci. 2012, 5, 7421–7459.
S. Chen, L. Zeng, H. Tian, X. Li, J. Gong, ACS Catal. 2017, 7, 3548–
3559.
K. Li, H. Wang, Y. Wei, “Syngas Generation from Methane Using a
Chemical-Looping Concept: A Review of Oxygen Carriers,” DOI
10.1155/2013/294817can be found under
L. Zeng, Z. Cheng, J. A. Fan, L.-S. Fan, J. Gong, Nature Reviews
Chemistry 2018, 2, 349–364.
R. Merkle, J. Maier, Angewandte Chemie International Edition 2008,
47, 3874–3894.
L. Qin, M. Guo, Y. Liu, Z. Cheng, J. A. Fan, L.-S. Fan, Applied
Catalysis B: Environmental 2018, 235, 143–149.
S. Miyoshi, M. Martin, Phys. Chem. Chem. Phys. 2009, 11, 3063–
3070.
We acknowledge the support of the European Synchrotron
Radiation Facility (ESRF) for experiment no. MA-4239. We would
like to thank Dr. Catherine Dejoie for her valuable help during data
acquisition at beamline ID22. We also thank Dr Budhika Mendis
for access to Durham University Microscopy Facility. The
research leading to these results has received funding from the
European Research Council under the European Union's Seventh
Framework Programme (FP/2007-2013) / ERC Grant Agreement
Number 320725 and from the EPSRC via grants EP/P007767/1,
EP/P024807/1, EP/R023921/1.
[30]
[31]
[32]
[33]
[34]
The raw data supporting this publication are available at
10.25405/data.ncl.11302853.
T.-S. Oh, E. K. Rahani, D. Neagu, J. T. S. Irvine, V. B. Shenoy, R. J.
Gorte, J. M. Vohs, The Journal of Physical Chemistry Letters 2015, 6,
5106–5110.
Keywords: exsolution, strain, oxygen exchange/ capacity,
methane conversion, chemical looping
[35]
[36]
Y. Gao, D. Chen, M. Saccoccio, Z. Lu, F. Ciucci, Nano Energy 2016,
27, 499–508.
S. Cho, C. Yun, S. Tappertzhofen, A. Kursumovic, S. Lee, P. Lu, Q.
Jia, M. Fan, J. Jian, H. Wang, et al., Nature Communications 2016, 7,
12373.
J. L. MacManus-Driscoll, P. Zerrer, H. Wang, H. Yang, J. Yoon, A.
Fouchet, R. Yu, M. G. Blamire, Q. Jia, Nature Materials 2008, 7, 314–
320.
R. A. De Souza, Advanced Functional Materials 2015, 25, 6326–6342.
K. Yuan, S. S. Lee, W. Cha, A. Ulvestad, H. Kim, B. Abdilla, N. C.
Sturchio, P. Fenter, Nature Communications 2019, 10, DOI
10.1038/s41467-019-08470-0.
S. R. Bishop, D. Marrocchelli, C. Chatzichristodoulou, N. H. Perry, M.
B. Mogensen, H. L. Tuller, E. D. Wachsman, Annual Review of
Materials Research 2014, 44, 205–239.
O. Madelung, U. Rössler, M. Schulz, Eds. , in Non-Tetrahedrally
Bonded Binary Compounds II, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2000, pp. 1–4.
D. Neagu, J. T. S. Irvine, Chemistry of Materials 2010, 22, 5042–5053.
R. Moreno, J. Zapata, J. Roqueta, N. Bagués, J. Santiso, J.
Electrochem. Soc. 2014, 161, F3046–F3051.
C. Papadopoulou, H. Matralis, X. Verykios, in Catalysis for Alternative
Energy Generation (Eds.: L. Guczi, A. Erdôhelyi), Springer New York,
New York, NY, 2012, pp. 57–127.
[1]
[2]
S. J. Kim, T. Akbay, J. Matsuda, A. Takagaki, T. Ishihara, ACS
Applied Energy Materials 2019, 2, 1210–1220.
M. Cargnello, A. C. Johnston-Peck, B. T. Diroll, E. Wong, B. Datta, D.
Damodhar, V. V. T. Doan-Nguyen, A. A. Herzing, C. R. Kagan, C. B.
Murray, Nature 2015, 524, 450–453.
J. Greeley, W. P. Krekelberg, M. Mavrikakis, Angewandte Chemie
International Edition 2004, 43, 4296–4300.
Y. Wu, Z. Chen, P. Nan, F. Xiong, S. Lin, X. Zhang, Y. Chen, L. Chen,
B. Ge, Y. Pei, Joule 2019, 3, 1276–1288.
E.-M. Choi, A. D. Bernardo, B. Zhu, P. Lu, H. Alpern, K. H. L. Zhang,
T. Shapira, J. Feighan, X. Sun, J. Robinson, et al., Science Advances
2019, 5, eaav5532.
P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S.
Kaya, D. Nordlund, H. Ogasawara, et al., Nature Chemistry 2010, 2,
454–460.
L. Wang, Z. Zeng, W. Gao, T. Maxson, D. Raciti, M. Giroux, X. Pan,
C. Wang, J. Greeley, 2019, 6.
H. Jalili, J. W. Han, Y. Kuru, Z. Cai, B. Yildiz, J. Phys. Chem. Lett.
2011, 2, 801–807.
M. Escudero-Escribano, P. Malacrida, M. H. Hansen, U. G. Vej-
Hansen, A. Velázquez-Palenzuela, V. Tripkovic, J. Schiøtz, J.
Rossmeisl, I. E. L. Stephens, I. Chorkendorff, Science 2016, 352, 73–
76.
P. Lu, X. Wu, W. Guo, X. C. Zeng, Phys. Chem. Chem. Phys. 2012,
14, 13035–13040.
L. De Rogatis, M. Cargnello, V. Gombac, B. Lorenzut, T. Montini, P.
Fornasiero, ChemSusChem 2010, 3, 24–42.
D. Neagu, E. I. Papaioannou, W. K. W. Ramli, D. N. Miller, B. J.
Murdoch, H. Ménard, A. Umar, A. J. Barlow, P. J. Cumpson, J. T. S.
Irvine, et al., Nature Communications 2017, 8, DOI 10.1038/s41467-
017-01880-y.
[37]
[3]
[4]
[5]
[38]
[39]
[40]
[41]
[6]
[7]
[8]
[9]
[42]
[43]
[44]
[45]
[46]
D. Pakhare, J. Spivey, Chem. Soc. Rev. 2014, 43, 7813–7837.
M. Kubicek, Z. Cai, W. Ma, B. Yildiz, H. Hutter, J. Fleig, ACS Nano
2013, 7, 3276–3286.
O. Mihai, D. Chen, A. Holmen, Journal of Catalysis 2012, 293, 175–
185.
X. Zhu, K. Li, L. Neal, F. Li, ACS Catalysis 2018, 8, 8213–8236.
X. P. Dai, R. J. Li, C. C. Yu, Z. P. Hao, The Journal of Physical
Chemistry B 2006, 110, 22525–22531.
[10]
[11]
[12]
[47]
[48]
[49]
[13]
D. Neagu, T.-S. Oh, D. N. Miller, H. Ménard, S. M. Bukhari, S. R.
Gamble, R. J. Gorte, J. M. Vohs, J. T. S. Irvine, Nature
Communications 2015, 6, DOI 10.1038/ncomms9120.
This article is protected by copyright. All rights reserved.