M. Álvarez, et al.
MolecularCatalysis487(2020)110886
[4] P.G. Lustemberg, R.M. Palomino, R.A. Gutiérrez, D.C. Grinter, M. Vorokhta, Z. Liu,
P.J. Ramírez, V. Matolín, M.V. Ganduglia-Pirovano, S.D. Senanayake,
J.A. Rodriguez, Direct conversion of methane to methanol on Ni-Ceria surfaces:
metal–support interactions and water-enabled catalytic conversion by site blocking,
[5] B. Han, Y. Yang, Y. Xu, U.J. Etim, K. Qiao, B. Xu, Z. Yan, A review of the direct
oxidation of methane to methanol, Chinese J. Catal. 37 (2016) 1206–1215, https://
[6] B. Ipek, R.F. Lobo, Catalytic conversion of methane to methanol on Cu-SSZ-13 using
[7] N.V. Beznis, B.M. Weckhuysen, J.H. Bitter, Cu-ZSM-5 zeolites for the formation of
methanol from methane and oxygen: probing the active sites and spectator species,
[8] S. Al-Shihri, C.J. Richard, H. Al-Megren, D. Chadwick, Insights into the direct se-
lective oxidation of methane to methanol over ZSM-5 zeolytes in aqueous hydrogen
[24] E.M. Alayon, M. Nachtegaal, M. Ranocchiari, J.A. van Bokhoven, Catalytic con-
version of methane to methanol over Cu–mordenite, ChemComm 48 (2012)
[25] S.E. Bozbag, E.M.C. Alayon, J. Pecháček, M. Nachtegaal, M. Ranocchiari, J.A. van
Bokhoven, Methane to methanol over copper mordenite: yield improvement
through multiple cycles and different synthesis techniques, Catal. Sci. Technol. 6
[26] A.R. Kulkarni, Z.-J. Zhao, S. Siahrostami, J.K. Nørskov, F. Studt, Cation-exchanged
zeolites for the selective oxidation of methane to methanol, Catal. Sci. Technol. 8
[27] D.K. Pappas, E. Borfecchia, M. Dyballa, K.A. Lomachenko, A. Martini, G. Berlier,
B. Arstad, C. Lamberti, S. Bordiga, U. Olsbye, S. Svelle, P. Beato, Understanding and
optimizing the performance of Cu-FER for the direct CH4 to CH3OH conversion,
[28] S. Erim Bozbag, P. Šot, M. Nachtegaal, M. Ranocchiari, J. Bokhoven, C. Mesters,
Direct stepwise oxidation of methane to methanol over Cu-SiO2, ACS Catal. 8
[29] E.V. Kondratenko, T. Peppel, D. Seeburg, V.A. Kondratenko, N. Kalevaru, A. Martin,
S. Wohlrab, Methane conversion into different hydrocarbons or oxygenates: current
status and future perspectives in catalyst development and reactor operation, Catal.
[30] P. Vanelderen, B.E.R. Snyder, M.-L. Tsai, R. Hadt, J. Vancauwenbergh, O. Coussens,
R. Schoonheydt, B. Sels, E.I. Solomon, Spectroscopic definition of the copper active
sites in mordenite: selective methane oxidation, J. Am. Chem. Soc. 137 (2015)
[31] M. Ravi, M. Ranocchiari, J.A. van Bokhoven, The direct catalytic oxidation of
methane to methanol—a critical assessment, Angew. Chem. Int. Ed. 56 (2017)
[32] V.L. Sushkevich, D. Palagin, J.A. van Bokhoven, The effect of the active-site
structure on the activity of copper mordenite in the aerobic and anaerobic con-
version of methane into methanol, Angew. Chem. Int. Ed. 57 (2018) 8906–8910,
[9] V.L. Sushkevich, D. Palagin, M. Ranocchiari, J.A. van Bokhoven, Selective anae-
robic oxidation of methane enables direct synthesis of methanol, Science 356
[10] C. Hammond, S. Conrad, I. Hermans, Oxidative methane upgrading, ChemSusChem
[11] A.A. Latimer, A. Kakekhani, A.R. Kulkarni, J.K. Nørskov, Direct methane to me-
thanol: the selectivity–conversion limit and design strategies, ACS Catal. 8 (2018)
[12] K. Narsimhan, K. Iyoki, K. Dinh, Y. Roman-Leshkov, Catalytic oxidation of methane
into methanol over copper-exchanged zeolites with oxygen at low temperature, ACS
[13] T. Sheppard, C.D. Hamill, A. Goguet, D.W. Rooney, J.M. Thompson, A low tem-
perature, isothermal gas-phase system for conversion of methane to methanol over
[14] D.K. Pappas, E. Borfecchia, M. Dyballa, I.A. Pankin, K.A. Lomachenko, A. Martini,
M. Signorile, S. Teketel, B. Arstad, G. Berlier, C. Lamberti, S. Bordiga, U. Olsbye,
K.P. Lillerud, S. Svelle, P. Beato, Methane to methanol: structure–activity re-
lationships for Cu-CHA, J. Am. Chem. Soc. 139 (2017) 14961–14975, https://doi.
[15] J. Woertink, P. Smeets, M. Groothaert, M. Vance, B. Sels, R. Schoonheydt,
E. Solomon, A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of
methane to methanol, Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 18908–18913,
[33] W. Taifan, J. Baltrusaitis, CH4 conversion to value added products: potential,
limitations and extensions of a single step heterogeneous catalysis, Appl. Catal. B
[34] H.A. Doan, Z. Li, O.K. Farha, J.T. Hupp, R.Q. Snurr, Theoretical insights into direct
methane to methanol conversion over supported dicopper oxo nanoclusters, Catal.
[35] A.J. Knorpp, M.A. Newton, A.B. Pinar, J.A. van Bokhoven, Conversion of methane
to methanol on copper mordenite: redox mechanism of isothermal and high-tem-
perature-Activation procedures, Ind. Eng. Chem. Res. 57 (2018) 12036–12039,
[16] H.V. Le, S. Parishan, A. Sagaltchik, C. Göbel, C. Schlesiger, W. Malzer, A. Trunschke,
R. Schomäcker, A. Thomas, Solid-state ion-exchanged Cu/mordenite catalysts for
the direct conversion of methane to methanol, ACS Catal. 7 (2017) 1403–1412,
[36] A. Jenelle Knorpp, A. Belen Pinar, M. Newton, V.L. Sushkevich, J.A. van Bokhoven,
Copper-exchanged Omega (MAZ) zeolite: copper-concentration dependent active
sites and its unprecedented methane to methanol conversion, ChemCatChem 10
[17] K.T. Dinh, M.M. Sullivan, P. Serna, R.J. Meyer, M. Dincă, Y. Román-Leshkov,
Viewpoint on the partial oxidation of methane to methanol using Cu- and Fe-ex-
[37] L. Hoglund-Isaksson, W. Winiwarter, P. Purohit, P. Rafaj, W. Schopp, Z. Klimont, EU
low carbon roadmap 2050: potentials and costs for mitigation of non-CO2 green-
[18] T. Zimmermann, M. Soorholtz, M. Bilke, F. Schüth, Selective methane oxidation
catalyzed by platinum salts in oleum at turnover frequencies of large-scale in-
[19] R.A. Periana, D.J. Taube, S. Gamble, H. Taube, T. Satoh, H. Fujii, Platinum catalysts
for the high-yield oxidation of methane to a methanol derivative, Science 280
[20] R. Palkovits, C. von Malotki, M. Baumgarten, K. Müllen, C. Baltes, M. Antonietti,
P. Kuhn, J. Weber, A. Thomas, F. Schüth, Development of molecular and solid
catalysts for the direct low-temperature oxidation of methane to methanol,
[21] M.J. Wulfers, S. Teketel, B. Ipek, R.F. Lobo, Conversion of methane to methanol on
copper-containing small-pore zeolites and zeotypes, ChemComm 51 (2015)
[22] M.H. Mahyuddin, T. Tanaka, Y. Shiota, A. Staykov, K. Yoshizawa, Methane partial
oxidation over [Cu2(μ-O)]2+ and [Cu3(μ-O)3]2+ active species in large-pore
[38] I. Karakurt, G. Aydin, K. Aydiner, Sources and mitigation of methane emissions by
[39] A. Setiawan, E.M. Kennedy, M. Stockenhuber, Development of combustion tech-
nology for methane emitted from coal-mine ventilation air systems, Energy
[40] S. Su, A. Beath, H. Guo, C. Mallett, An assessment of mine methane mitigation and
utilisation technologies, Prog. Energy Combust. Sci. 31 (2005) 123–170, https://
[41] P. Tomkins, A. Mansouri, S.E. Bozbag, F. Krumeich, M. Bum Park, E. Mae,
C. Alayon, M. Ranocchiari, J. Bokhoven, Isothermal cyclic conversion of methane
into methanol over copper-exchanged zeolite at low temperature, Angew. Chem.
[42] S. Grundner, W. Luo, M. Sanchez-Sanchez, J.A. Lercher, Synthesis of single-site
copper catalysts for methane partial oxidation, ChemComm 52 (2016) 2553–2556,
[43] Y. Kim, T.Y. Kim, H. Lee, J. Yi, Distinct activation of Cu-MOR for direct oxidation of
[23] S. Grundner, M.A.C. Markovits, G. Li, M. Tromp, E.A. Pidko, E.J.M. Hensen,
A. Jentys, M. Sanchez-Sanchez, J.A. Lercher, Single-site trinuclear copper oxygen
clusters in mordenite for selective conversion of methane to methanol, Nat.
[44] C. Perego, S. Peratello, Experimental methods in catalytic kinetics, Catal. Today 52
7